Chinese Journal on Internet of Things ›› 2023, Vol. 7 ›› Issue (2): 50-66.doi: 10.11959/j.issn.2096-3750.2023.00323
• Theory and Technology • Previous Articles Next Articles
Guanglei GENG1,2, Bo GAO1,2, Ke XIONG1,2, Pingyi FAN3, Yang LU1,2, Yuwei WANG4
Revised:
2023-01-18
Online:
2023-06-30
Published:
2023-06-01
Supported by:
CLC Number:
Guanglei GENG, Bo GAO, Ke XIONG, Pingyi FAN, Yang LU, Yuwei WANG. A survey of federated learning for 6G networks[J]. Chinese Journal on Internet of Things, 2023, 7(2): 50-66.
"
FL赋能6G | 概述 | 分类 |
促进灵活架构设计 | FL针对6G移动边缘场景灵活设计分布式网络架构 | 传统网络场景架构改进[ |
车联网场景架构设计[ | ||
促进高效资源利用 | FL结合决策算法优化6G网络中的分布式资源利用 | FL结合传统优化方法[ |
FL结合DRL算法[ | ||
促进可靠数据传输 | FL在架构、算法层面,降低6G场景中的时延和通信成本 | 基于全局优化通信指标[ |
基于参与方优化通信指标[ | ||
促进安全隐私保护 | FL结合隐私保护技术,确保6G分布式场景模型安全传输 | FL结合安全多方计算[ |
FL结合差分隐私[ | ||
FL结合同态加密[ | ||
促进个性服务提供 | FL克服6G数据Non-IID分布特点,提供个性化智能服务 | 基于服务端实现个性化FL[ |
基于客户端实现个性化FL[ | ||
基于其他技术实现个性化FL[ |
[1] | 栾宁, 熊轲, 张煜 ,等. 6G:典型应用、关键技术与面临挑战[J]. 物联网学报, 2022,6(1): 29-43. |
LUAN N , XIONG K , ZHANG Y ,et al. 6G:typical applications,key technologies and challenges[J]. Chinese Journal on Internet of Things, 2022,6(1): 29-43. | |
[2] | SHAHRAKI A , ABBASI M , PIRAN M J ,et al. A comprehensive survey on 6G networks:applications,core services,enabling technologies,and future challenges[EB]. 2021. |
[3] | LI T , SAHU A K , TALWALKAR A ,et al. Federated learning:challenges,methods,and future directions[J]. IEEE Signal Processing Magazine, 2020,37(3): 50-60. |
[4] | BOUZINIS P S , DIAMANTOULAKIS P D , KARAGIANNIDIS G K . Wireless federated learning (WFL) for 6G networks part I:research challenges and future trends[J]. IEEE Communications Letters, 2022,26(1): 3-7. |
[5] | YANG Z H , CHEN M Z , WONG K K ,et al. Federated learning for 6G:applications,challenges,and opportunities[J]. Engineering, 2022,8: 33-41. |
[6] | AL-QURAAN M , MOHJAZI L , BARIAH L ,et al. Edge-native intelligence for 6G communications driven by federated learning:a survey of trends and challenges[EB]. 2021. |
[7] | LIU Y , YUAN X L , XIONG Z H ,et al. Federated learning for 6G communications:challenges,methods,and future directions[J]. China Communications, 2020,17(9): 105-118. |
[8] | XIAO Y , SHI G M , KRUNZ M ,et al. Towards ubiquitous AI in 6G with federated learning[EB]. 2020. |
[9] | NGUYEN D C , DING M , PATHIRANA P N ,et al. Federated learning for internet of things:a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2021,23(3): 1622-1658. |
[10] | 白卫岗, 盛敏, 杜盼盼 . 6G卫星物联网移动性管理:挑战与关键技术[J]. 物联网学报, 2020,4(1): 104-110. |
BAI W G , SHENG M , DU P P . Mobility management of the 6G satellite IoT:challenges and key techniques[J]. Chinese Journal on Internet of Things, 2020,4(1): 104-110. | |
[11] | PATIL A , IYER S , PANDYA R J . A survey of machine learning algorithms for 6G wireless networks[J]. arXiv preprint, 2022,arXiv:2203.08429. |
[12] | 中国通信学会. 通感算一体化网络前沿报告[R]. 2021. |
China Institute of Communications. Synesthesia integrated network frontier report[R]. 2021. | |
[13] | GUO H Z , ZHOU X Y , LIU J J ,et al. Vehicular intelligence in 6G:networking,communications,and computing[J]. Vehicular Communications, 2022,33:100399. |
[14] | LIU T , DING J H , WANG T ,et al. Towards fast and accurate federated learning with non-IID data for cloud-based IoT applications[J]. arXiv preprint, 2022,arXiv:2201.12515. |
[15] | LIU G Y , ZHU J K , HUANG Y M ,et al. Guest editorial:6G towards 2030:from key technology to network architecture[J]. China Communications, 2022,19(3): 3-6. |
[16] | HOKAZONO Y , KOHARA H , KISHIYAMA Y ,et al. Extreme coverage extension in 6G:cooperative non-terrestrial network architecture integrating terrestrial networks[C]// Proceedings of 2022 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2022: 138-143. |
[17] | ABREHA H G , HAYAJNEH M , SERHANI M A . Federated learning in edge computing:a systematic survey[J]. Sensors (Basel,Switzerland), 2022,22(2): 450. |
[18] | ZHAO B R , CUI Q M , LIANG S Y ,et al. Green concerns in federated learning over 6G[J]. China Communications, 2022,19(3): 50-69. |
[19] | ABAD M S H , OZFATURA E , GUNDUZ D ,et al. Hierarchical federated learning ACROSS heterogeneous cellular networks[C]// Proceedings of ICASSP 2020 - 2020 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP). Piscataway:IEEE Press, 2020: 8866-8870. |
[20] | LIU L M , ZHANG J , SONG S H ,et al. Client-edge-cloud hierarchical federated learning[C]// Proceedings of ICC 2020 - 2020 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2020: 1-6. |
[21] | HOSSEINALIPOUR S , BRINTON C G , AGGARWAL V ,et al. From federated to fog learning:distributed machine learning over heterogeneous wireless networks[J]. IEEE Communications Magazine, 2020,58(12): 41-47. |
[22] | CHEN M Z , POOR H V , SAAD W ,et al. Wireless communications for collaborative federated learning[J]. IEEE Communications Magazine, 2020,58(12): 48-54. |
[23] | NISHIO T , YONETANI R . Client selection for federated learning with heterogeneous resources in mobile edge[C]// Proceedings of ICC 2019 2019 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2019: 1-7. |
[24] | LIU X L , DENG Y S , MAHMOODI T . A novel hybrid split and federated learning architecture in wireless UAV networks[C]// Proceedings of ICC 2022 - IEEE International Conference on Communications. Piscataway:IEEE Press, 2022: 1-6. |
[25] | PRATHIBA S B , RAJA G , ANBALAGAN S ,et al. Cyber twin-driven federated learning based personalized service provision for 6G-V2X[J]. IEEE Transactions on Vehicular Technology, 2022,71(5): 4632-4641. |
[26] | BANO S , TONELLOTTO N , CASSARà P ,et al. KafkaFed:two-tier federated learning communication architecture for Internet of vehicles[C]// Proceedings of 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). Piscataway:IEEE Press, 2022: 515-520. |
[27] | WANG Z , LI X H , WU T H ,et al. A credibility-aware swarm-federated deep learning framework in Internet of vehicles[J]. arXiv preprint, 2021,arXiv:2108.03981. |
[28] | ZHOU X K , LIANG W , SHE J H ,et al. Two-layer federated learning with heterogeneous model aggregation for 6G supported Internet of vehicles[J]. IEEE Transactions on Vehicular Technology, 2021,70(6): 5308-5317. |
[29] | PENG Y Q , CHEN Z Y , CHEN Z X ,et al. BFLP:an adaptive federated learning framework for Internet of vehicles[J]. Mobile Information Systems, 2021: 1-18. |
[30] | CHAI H Y , LENG S P , CHEN Y J ,et al. A hierarchical blockchain-enabled federated learning algorithm for knowledge sharing in Internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021,22(7): 3975-3986. |
[31] | QU Y B , DONG C , ZHENG J C ,et al. Empowering the edge intelligence by air-ground integrated federated learning in 6G networks[J]. arXiv preprint, 2020,arXiv:2007.13054. |
[32] | KHAN L U , TUN Y K , ALSENWI M ,et al. A dispersed federated learning framework for 6G-enabled autonomous driving cars[J]. arXiv preprint, 2021,arXiv:2105.09641. |
[33] | LIU S , YU J , DENG X H ,et al. FedCPF:an efficient-communication federated learning approach for vehicular edge computing in 6G communication networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022,23(2): 1616-1629. |
[34] | YU A , YANG Q K , DOU L H ,et al. Federated imitation learning:a cross-domain knowledge sharing framework for traffic scheduling in 6G ubiquitous IoT[J]. IEEE Network, 2021,35(5): 136-142. |
[35] | YANG Z H , CHEN M Z , SAAD W ,et al. Energy efficient federated learning over wireless communication networks[J]. IEEE Transactions on Wireless Communications, 2021,20(3): 1935-1949. |
[36] | LI J , GAO H , LV T J ,et al. Deep reinforcement learning based computation offloading and resource allocation for MEC[C]// Proceedings of 2018 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2018: 1-6. |
[37] | PENG H X , SHEN X M . Multi-agent reinforcement learning based resource management in MEC- and UAV-assisted vehicular networks[J]. IEEE Journal on Selected Areas in Communications, 2021,39(1): 131-141. |
[38] | ZARIF A H , AZMI P , MOKARI N ,et al. AoI minimization in energy harvesting and spectrum sharing enabled 6G networks[J]. arXiv preprint, 2021,arXiv:2107.00340. |
[39] | TANG S P , ZHOU W Q , CHEN L Y ,et al. Battery-constrained federated edge learning in UAV-enabled IoT for B5G/6G networks[J]. Physical Communication, 2021,47:101381. |
[40] | YE Y T , WEI W S , GENG D Q ,et al. Dynamic coordination in UAV swarm assisted MEC via decentralized deep reinforcement learning[C]// Proceedings of 2020 International Conference on Wireless Communications and Signal Processing (WCSP). Piscataway:IEEE Press, 2020: 1064-1069. |
[41] | WEI D W , MA J F , LUO L B ,et al. Computation offloading over multi-UAV MEC network:a distributed deep reinforcement learning approach[J]. Computer Networks, 2021,199:108439. |
[42] | YANG Z , LIU Y W , CHEN Y . Distributed reinforcement learning for NOMA-enabled mobile edge computing[C]// Proceedings of 2020 IEEE International Conference on Communications Workshops (ICC Workshops). Piscataway:IEEE Press, 2020: 1-6. |
[43] | TEHRANI P , RESTUCCIA F , LEVORATO M . Federated deep reinforcement learning for the distributed control of NextG wireless networks[C]// Proceedings of 2021 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). Piscataway:IEEE Press, 2022: 248-253. |
[44] | ZHUO H K , FENG W F , XU Q ,et al. Federated reinforcement learning[EB]. 2019. |
[45] | MESSAOUD S , BRADAI A , AHMED O B ,et al. Deep federated Q-learning-based network slicing for industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2021,17(8): 5572-5582. |
[46] | NIE Y W , ZHAO J H , GAO F F ,et al. Semi-distributed resource management in UAV-aided MEC systems:a multi-agent federated reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2021,70(12): 13162-13173. |
[47] | ZANG L Q , ZHANG X , GUO B R . Federated deep reinforcement learning for online task offloading and resource allocation in WPC-MEC networks[J]. IEEE Access, 2022,10: 9856-9867. |
[48] | XUE Z Y , ZHOU P , XU Z C ,et al. A resource-constrained and privacy-preserving edge-computing-enabled clinical decision system:a federated reinforcement learning approach[J]. IEEE Internet of Things Journal, 2021,8(11): 9122-9138. |
[49] | CHEN M Z , SHLEZINGER N , POOR H V ,et al. Communication-efficient federated learning[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021,118(17): e2024789118. |
[50] | CHEN M Z , GüNDüZ D , HUANG K B ,et al. Distributed learning in wireless networks:recent progress and future challenges[J]. IEEE Journal on Selected Areas in Communications, 2021,39(12): 3579-3605. |
[51] | HUANG T S , LIN W W , SHEN L ,et al. Stochastic client selection for federated learning with volatile clients[J]. IEEE Internet of Things Journal, 2022,9(20): 20055-20070. |
[52] | ZHU Z Q , WAN S , FAN P Y ,et al. Federated multiagent actor-critic learning for age sensitive mobile-edge computing[J]. IEEE Internet of Things Journal, 2022,9(2): 1053-1067. |
[53] | LI R J , XU H B , ZHANG G P ,et al. Latency optimization for federated learning over wireless power transfer[J]. Physical Communication, 2022,53:101765. |
[54] | HUANG N , WANG T S , WU Y ,et al. Delay minimization for intelligent reflecting surface assisted federated learning[J]. China Communications, 2022,19(4): 216-229. |
[55] | PRATHIBA S B , RAJA G , ANBALAGAN S ,et al. Federated learning empowered computation offloading and resource management in 6G-V2X[J]. IEEE Transactions on Network Science and Engineering, 2022,9(5): 3234-3243. |
[56] | YANG Q , LIU Y , CHEN T J ,et al. Federated machine learning:concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019,10(2): 1-19. |
[57] | RIBERO M , VIKALO H . Communication-efficient federated learning via optimal client sampling[J]. arXiv preprint, 2020,arXiv:2007.15197. |
[58] | LI X Y , QU Z , TANG B ,et al. Stragglers are not disaster:a hybrid federated learning algorithm with delayed gradients[J]. arXiv preprint, 2021,arXiv:2102.06329. |
[59] | CHO Y J , WANG J Y , JOSHI G . Client selection in federated learning:convergence analysis and power-of-choice selection strategies[J]. arXiv preprint, 2020,arXiv:2010.01243. |
[60] | YOSHIDA N , NISHIO T , MORIKURA M ,et al. MAB-based client selection for federated learning with uncertain resources in mobile networks[C]// Proceedings of 2020 IEEE Globecom Workshops (GC Wkshps. Piscataway:IEEE Press, 2021: 1-6. |
[61] | WEI K , LI J , DING M ,et al. Federated learning with differential privacy:algorithms and performance analysis[J]. IEEE Transactions on Information Forensics and Security, 2020,15: 3454-3469. |
[62] | MA C , LI J , DING M ,et al. On safeguarding privacy and security in the framework of federated learning[J]. IEEE Network, 2020,34(4): 242-248. |
[63] | WANG R J , LAI J S , ZHANG Z Y ,et al. Privacy-preserving federated learning for Internet of medical things under edge computing[J]. IEEE Journal of Biomedical and Health Informatics, 2022. |
[64] | SONG J C , WANG W Z , GADEKALLU T R ,et al. EPPDA:an efficient privacy-preserving data aggregation federated learning scheme[J]. IEEE Transactions on Network Science and Engineering, 2022,PP(99): 1. |
[65] | KANAGAVELU R , LI Z X , SAMSUDIN J ,et al. Two-phase multi-party computation enabled privacy-preserving federated learning[C]// Proceedings of 2020 20th IEEE/ACM International Symposium on Cluster,Cloud and Internet Computing (CCGRID). Piscataway:IEEE Press, 2020: 410-419. |
[66] | ZHU H F , MONG GOH R S , NG W K . Privacy-preserving weighted federated learning within the secret sharing framework[J]. IEEE Access, 2020,8: 198275-198284. |
[67] | KANAGAVELU R , WEI Q S , LI Z X ,et al. CE-Fed:communication efficient multi-party computation enabled federated learning[J]. Array, 2022,15:100207. |
[68] | MENG Q , ZHOU F , REN H N ,et al. Improving federated learning face recognition via privacy-agnostic clusters[J]. arXiv preprint, 2022,arXiv:2201.12467. |
[69] | WAN Y C , QU Y Y , GAO L X ,et al. Privacy-preserving blockchain-enabled federated learning for B5G-Driven edge computing[J]. Computer Networks, 2022,204:108671. |
[70] | LIU W Y , CHENG J H , WANG X L ,et al. Hybrid differential privacy based federated learning for Internet of Things[J]. Journal of Systems Architecture, 2022,124:102418. |
[71] | HU R , GONG Y M , GUO Y X . Federated learning with sparsified model perturbation:improving accuracy under client-level differential privacy[J]. arXiv preprint, 2022,arXiv:2202.07178. |
[72] | WU X , ZHANG Y T , SHI M Y ,et al. An adaptive federated learning scheme with differential privacy preserving[J]. Future Generation Computer Systems, 2022,127: 362-372. |
[73] | HUANG J , XU C , JI Z H ,et al. AFLPC:an asynchronous federated learning privacy-preserving computing model applied to 5G-V2X[J]. Security and Communication Networks, 2022,2022: 1-11. |
[74] | PARK J , LIM H . Privacy-preserving federated learning using homomorphic encryption[J]. Applied Sciences, 2022,12(2): 734. |
[75] | KU H C , SUSILO W , ZHANG Y D ,et al. Privacy-preserving federated learning in medical diagnosis with homomorphic re-Encryption[J]. Computer Standards & Interfaces, 2022,80:103583. |
[76] | WIBAWA F , CATAK F O , SARP S ,et al. Homomorphic encryption and federated learning based privacy-preserving CNN training:COVID-19 detection use-case[J]. arXiv preprint, 2022,arXiv:2204.07752. |
[77] | PEJIC I , WANG R , LIANG K ,et al. Effect of homomorphic encryption on the performance of training federated learning generative adversarial networks[EB]. 2022. |
[78] | ONOSZKO N , KARLSSON G , MOGREN O ,et al. Decentralized federated learning of deep neural networks on non-iid data[J]. arXiv preprint, 2021,arXiv:2107.08517. |
[79] | HUANG Y T , CHU L Y , ZHOU Z R ,et al. Personalized cross-silo federated learning on non-IID data[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021,35(9): 7865-7873. |
[80] | LI T , SANJABI M , BEIRAMI A ,et al. Fair resource allocation in federated learning[J]. arXiv preprint, 2019,arXiv:1905.10497. |
[81] | CHEN H Y , CHAO W L . FedBE:making Bayesian model ensemble applicable to federated learning[J]. arXiv preprint, 2020,arXiv:2009.01974. |
[82] | SHAMSIAN A , NAVON A , FETAYA E ,et al. Personalized federated learning using hypernetworks[J]. arXiv preprint, 2021,arXiv:2103.04628. |
[83] | ARIVAZHAGAN M G , AGGARWAL V , SINGH A K ,et al. Federated learning with personalization layers[J]. arXiv preprint, 2019,arXiv:1912.00818. |
[84] | COLLINS L , HASSANI H , MOKHTARI A ,et al. Exploiting shared representations for personalized federated learning[J]. arXiv preprint, 2021,arXiv:2102.07078. |
[85] | SATTLER F , MULLER K R , SAMEK W . Clustered federated learning:model-agnostic distributed multitask optimization under privacy constraints[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021,32(8): 3710-3722. |
[86] | LI XX , JIANG M R , ZHANG X F ,et al. FedBN:federated learning on non-IID features via local batch normalization[J]. arXiv preprint, 2021,arXiv:2102.07623. |
[87] | DINH C T , TRAN N H , NGUYENT D . Personalized federated learning with Moreau envelopes[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. New York:ACM Press, 2020: 21394-21405. |
[88] | ACHITUVE I , SHAMSIAN A , NAVON A ,et al. Relational learning with Gaussian processes[M]. Advances in Neural Information Processing Systems 19. Vancouver: The MIT Press, 2007. |
[89] | DANDI Y , BARBA L , JAGGI M . Implicit gradient alignment in distributed and federated learning[J]. arXiv preprint, 2021,arXiv:2106.13897. |
[90] | RUAN Y C , JOE-WONG C , . FedSoft:soft clustered federated learning with proximal local updating[J]. arXiv preprint, 2021,arXiv:2112.06053. |
[91] | YANG M , WANG X M , QIAN H ,et al. An improved federated learning algorithm for privacy preserving in cybertwin-driven 6G system[J]. IEEE Transactions on Industrial Informatics, 2022,18(10): 6733-6742. |
[92] | AAMER B , CHERGUI H , BENJILLALI M ,et al. Entropy-driven stochastic federated learning in non-IID 6G edge-RAN[J]. Frontiers in Communications and Networks, 2021,2:739414. |
[93] | SMITH V , CHIANG C K , SANJABI M ,et al. Federated multi-task learning[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York:ACM Press, 2017: 4427-4437. |
[94] | LI T , HU S Y , BEIRAMI A ,et al. Ditto:fair and robust federated learning through personalization[J]. arXiv preprint, 2020,arXiv:2012.04221. |
[95] | FINN C , ABBEEL P , LEVINE S . Model-agnostic meta-learning for fast adaptation of deep networks[J]. arXiv preprint, 2017,arXiv:1703.03400. |
[96] | JIANG Y H , KONE?NY J , RUSH K ,et al. Improving federated learning personalization via model agnostic meta learning[J]. arXiv preprint, 2019,arXiv:1909.12488. |
[97] | ACAR D A E , ZHAO Y , ZHU R ,et al. Debiasing model updates for improving personalized federated training[C]// International Conference on Machine Learning. New York:PMLR, 2021: 21-31. |
[98] | HINTON G , VINYALS O , DEAN J . Distilling the knowledge in a neural network[J]. arXiv preprint, 2015,arXiv:1503.02531. |
[99] | ZHU Z D , HONG J Y , ZHOU J Y . Data-free knowledge distillation for heterogeneous federated learning[J]. Proceedings of Machine Learning Research, 2021,139: 12878-12889. |
[100] | LIN T , KONG L J , STICH S U ,et al. Ensemble distillation for robust model fusion in federated learning[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. New York:ACM Press, 2020: 2351-2363. |
[101] | KAUL S , GRUTESER M , RAI V ,et al. Minimizing age of information in vehicular networks[C]// Proceedings of 2011 8th Annual IEEE Communications Society Conference on Sensor,Mesh and Ad Hoc Communications and Networks. Piscataway:IEEE Press, 2011: 350-358. |
[102] | 熊轲, 胡慧敏, 艾渤 ,等. 6G时代信息新鲜度优先的无线网络设计[J]. 物联网学报, 2020,4(1): 80-91. |
XIONG K , HU H M , AI B ,et al. Information freshness orientated wireless network design for 6G[J]. Chinese Journal on Internet of Things, 2020,4(1): 80-91. | |
[103] | KHAN L U , SAAD W , HAN Z ,et al. Federated learning for internet of things:recent advances,taxonomy,and open challenges[J]. IEEE Communications Surveys & Tutorials, 2021,23(3): 1759-1799. |
[104] | REN H C , DENG J J , XIE X H . GRNN:generative regression neural network—a data leakage attack for federated learning[J]. ACM Transactions on Intelligent Systems and Technology, 2022,13(4): 1-24. |
[105] | NGUYEN D C , DING M , PHAM Q V ,et al. Federated learning meets blockchain in edge computing:opportunities and challenges[J]. IEEE Internet of Things Journal, 2021,8(16): 12806-12825. |
[106] | STRINATI E C , BELOT D , FALEMPIN A ,et al. Toward 6G:from new hardware design to wireless semantic and goal-oriented communication paradigms[C]// Proceedings of ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC). Piscataway:IEEE Press, 2021: 275-282. |
[107] | ZHANG H N , WANG F . Wireless sensor energy harvesting and management[EB]. 2022. |
[108] | ZHU X M , JIANG C X , KUANG L L ,et al. Cooperative transmission in integrated terrestrial-satellite networks[J]. IEEE Network, 2019,33(3): 204-210. |
[109] | PANG L , YANG C G , CHEN D Y ,et al. A survey on intent-driven networks[J]. IEEE Access, 2020,8: 22862-22873. |
[110] | 周洋程, 闫实, 彭木根 . 意图驱动的 6G 无线接入网络[J]. 物联网学报, 2020,4(1): 72-79. |
ZHOU Y C , YAN S , PENG M G . Intent-driven 6G radio access network[J]. Chinese Journal on Internet of Things, 2020,4(1): 72-79. | |
[111] | VU T T , NGO D T , TRAN N H ,et al. Cell-free massive MIMO for wireless federated learning[J]. IEEE Transactions on Wireless Communications, 2020,19(10): 6377-6392. |
[112] | NI W L , LIU Y W , YANG Z H ,et al. Integrating over-the-air federated learning and non-orthogonal multiple access:what role can RIS play?[J]. IEEE Transactions on Wireless Communications, 2022,21(12): 10083-10099. |
[113] | JAMES SINGH K , HUANG Y M , AHMED T ,et al. Micro-LED as a promising candidate for high-speed visible light communication[J]. Applied Sciences, 2020,10(20): 7384. |
[1] | Jing WU, Sheng LI, Jing ZHANG, Ming XIN, Ruowen TAO, Zhou ZHOU, Lijia PAN, Yi SHI. New flexible sensor for the internet of things [J]. Chinese Journal on Internet of Things, 2023, 7(2): 1-14. |
[2] | Kai JIANG, Yue CAO, Huan ZHOU, Xuefeng REN, Yongdong ZHU, Hai LIN. Edge intelligence empowered internet of vehicles: concept, framework, issues, implementation, and prospect [J]. Chinese Journal on Internet of Things, 2023, 7(1): 37-48. |
[3] | Bin SHEN, Yinbo LI, Xiaowei LIANG. Spectrum access control for cognitive internet of things users based on enhanced weighted centroid localization [J]. Chinese Journal on Internet of Things, 2023, 7(1): 93-108. |
[4] | Jiahui GUO, Zhuoyue CHEN, Wei GAO, Xijun WANG, Xinghua SUN, Lin GAO. Clients selection method based on knapsack model in federated learning [J]. Chinese Journal on Internet of Things, 2022, 6(4): 158-168. |
[5] | Yingyun GUO, Bo GAO, Zhifei ZHANG, Yu ZHANG, Ke XIONG. An incentive mechanism with bandwidth allocation for federated learning [J]. Chinese Journal on Internet of Things, 2022, 6(4): 82-92. |
[6] | Jun SUN, Shangweikang ZHAO. Energy-saving computation offloading scheme based on Sarsa algorithm in industrial internet of things [J]. Chinese Journal on Internet of Things, 2022, 6(3): 82-90. |
[7] | Zaichen ZHANG, Xiaohu YOU, Jian DANG, Liang WU, Bingcheng ZHU, Ji CHEN, Lei WANG. Optical wireless communication and internet of things [J]. Chinese Journal on Internet of Things, 2022, 6(3): 1-13. |
[8] | Nuo HUANG, Weijie LIU, Chen GONG. Industrial IoT oriented petahertz communication [J]. Chinese Journal on Internet of Things, 2022, 6(3): 37-46. |
[9] | Wei WANG, Renqian GU, Li3 PENG, Jijun ZHAO, Zhongcheng WEI, Cunxi CHANG. Robust optimization of air based relay for internet of things based on UAV [J]. Chinese Journal on Internet of Things, 2022, 6(1): 101-112. |
[10] | Mingjuan WU, Shuyi CHEN, Haitao LIU. Study of international standard ISO/IEC 30144: 2020 applied in intelligent substation auxiliary monitoring [J]. Chinese Journal on Internet of Things, 2022, 6(1): 123-132. |
[11] | Jiahua MA, Xinghua SUN, Wenchao XIA, Xijun WANG, Hongzhou TAN, Hongbo ZHU. Node selection based on label quantity information in federated learning [J]. Chinese Journal on Internet of Things, 2021, 5(4): 46-53. |
[12] | Hao JIANG, Hongming CHEN, Yilong CAO, Haoyang CUI. Comparison of MIMO based on high capacity LPWAN technology TurMassTM and LoRa [J]. Chinese Journal on Internet of Things, 2021, 5(4): 54-61. |
[13] | Zhongcheng WEI, Xinqiu ZHANG, Bin LIAN, Wei WANG, Jijun ZHAO. A survey on Wi-Fi signal based identification technology [J]. Chinese Journal on Internet of Things, 2021, 5(4): 107-119. |
[14] | Yinghai XIE, Yu ZHANG. Electricity meter area identification technology based on channel coding theory [J]. Chinese Journal on Internet of Things, 2021, 5(4): 137-144. |
[15] | Yiyang HU, Lina QI. Channel estimation method of massive MIMO-OFDM system based on adaptive compressed sensing [J]. Chinese Journal on Internet of Things, 2021, 5(3): 78-85. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|