Chinese Journal on Internet of Things ›› 2021, Vol. 5 ›› Issue (4): 107-119.doi: 10.11959/j.issn.2096-3750.2021.00213
• Theory and Technology • Previous Articles Next Articles
Zhongcheng WEI1,2, Xinqiu ZHANG1,2, Bin LIAN2,3, Wei WANG1,2, Jijun ZHAO1,2
Revised:
2020-12-25
Online:
2021-12-30
Published:
2021-12-01
Supported by:
CLC Number:
Zhongcheng WEI, Xinqiu ZHANG, Bin LIAN, Wei WANG, Jijun ZHAO. A survey on Wi-Fi signal based identification technology[J]. Chinese Journal on Internet of Things, 2021, 5(4): 107-119.
"
文章 | 活动 | 期刊或会议 | 数据处理 | 信号分段 | 特征提取 | 分类识别 | 识别性能 |
WiFi-ID[ | 行走 | DCOSS’16 | 带通滤波、DWT | 短时能量 | 统计特征 | 基于稀疏近似的分类 | 2~6人,93%~77% |
Freesense[ | 行走 | Globecom’16 | 低通滤波、PCA、DWT | MAD | 小波近似系数 | DTW&KNN | 2~6人,94.5%~88.9% |
WFID[ | 行走 | MobiQuitous’16 | PCA | 方差 | 子载波振幅频率 | SVM | 6~9人,93.1%~91.9% |
Nipu[ | 行走 | ICIEV&icIVPR’18 | 巴特沃斯低通滤波 | 短时能量 | 统计特征 | 随机森林、DT | 5人,78~97.5%,84%~95% |
NeuralWave[ | 行走 | IECON’18 | 小波变换去噪、PCA | — | 神经网络特征 | ConvNet | 24人,87.76%±2.14% |
Freesense[ | 行走 | J AMB INTEL HUM COMP’18 | 低通滤波、PCA、DWT | MAD | 小波近似系数 | DTW&KNN | 2~6人,94.5%~88.9% |
CSIID[ | 行走 | ICCSE '19 | — | — | 神经网络特征 | CNN&LSTM | 2~6人,97.4%~94.8% |
XModal~ID[ | 行走 | MobiCom’19 | STFT | 平均速度 | 频率分布、躯干的平均 | 神经网络 | 8人,top1 75%, |
视频 | 隐藏点消除、STFT | 速度、躯干速度梯度的 | top2 90%, | ||||
直方图等 | top3 97% | ||||||
WiDIGR[ | 行走 | IoT~J’20 | PCA、带通滤波、STFT、Gabor滤波器 | 功率谱密度 | 无线图像特征、行走速度、步长等 | SVM | 3~6 人,78.28%~92.83% |
WiFiU[ | 步态 | UbiComp’16 | PCA 、STFT | 方差 | 行走速度、步长、步态周期等 | SVM | 50人,top1 79.28%, |
top2 89.52%, | |||||||
top3 93.05% | |||||||
WiWho[ | 步态 | IPSN’16 | 远端多径消除、带通滤波 | 峰谷检测、短时能量 | 统计特征、速度特征 | DTW | 2~6人,92%~80% |
Wii[ | 步态 | Sensors’17 | PCA、低通滤波 | CWT 与小波方差 | 统计特征 | SVM | 2~8人,98.7%~90.9% |
chen[ | 步态 | UbiComp '17 | 远端多径消除、低通滤波 | 短时能量、声波数据 | 统计特征、行走和周期数据的形状等 | SVM | 2~6人,92%~82% |
声波 | 谱减法 | 方差 | 步态周期、持续时间、周期数据的形状 | ||||
AutoID[ | 步态 | AAAI’18 | DWT | 峰谷检测 | Shapelets | C3SL&AGGM | 20人,91% |
Nkabiti[ | 步态 | WOCC’19 | 切比雪夫滤波器 | CWT 与小波方差 | 运动时间、统计特征 | LSTM | 7人,宿舍 95.5%走廊 96.3% |
Xu[ | 站立 | IEEE T INF FOREN SEC’17 | 背景环境减法、TR | — | 人体无线电生物特征 | 时空共振强度 | 11人,98.78% |
WiPIN[ | 静止 | GLOBECOM’19 | 巴特沃斯滤波、远端多径消除 | — | CSI 序列平均值,统计特征 | SVM | 30人,92% |
Liu[ | 呼吸 | MobiCom’18 | 基于 EMD 的滤波、子载波选择、FWPT | — | 呼吸周期、持续时间等 | KNN | 20人,93%以上 |
CP-ID[ | 静止 | PERVASIVE MOB COMPUT’19 | 远 端 多 径 消 除、CWT、子载波选择、PCA | — | 统计特征、小波近似系数 | SVM | 2~5 人,84%~65% |
BioID[ | 唇语 | UIC’18 | 巴特沃斯低通滤波、PCA、DWT | 短时能量、MAD | 小波近似系数 | KNN、DT | 5人,90% |
WiID[ | 手势 | ACM’18 | PCA、短时傅里叶变换 | — | 速度时间子序列 | 支持向量分布估计 | 5人,7种手势,90%以上 |
FingerPass[ | 手势 | MobiHoc’19 | 远端多径消除、巴特沃斯滤波、子载波选择 | 振幅微分 | 神经网络 | LSTM SVDD | 8种手势,88.7%;7人, 92.6% |
Wang[ | 行走呼吸 | IEEE T VEH TECHNOL’18 | 均值滤波器、PCA、EMD | — | IMF的时频域特征 | SoftMax | 10人,呼吸97.5%,行走90.4% |
Shi[ | 日常活动 | MobiHoc’17 | 巴特沃斯带通滤波、子载波选择 | 方差的短时能量 | 统计特征 | DNN | 5人,91%;8种原位置活动 97.6%;11人,94%;8种路线行走活动,98.3% |
*WiID[ | 日常活动 | UbiComp’17 | 低通滤波器、PCA、DWT | 方差的均值个数 | 小波近似系数、方向、距离特征、时间区间分布等 | HMM&SVM | 10人,五种日常活动, 4种方向活动,90%以上 |
WiAU[ | 日常活动 | SECON’18 | 巴特沃斯低通滤波、子载波选择 | 标准差 | 神经网络 | CNN& ResNet | 12人 身份(行走) 98%, 16种活动90% |
"
文章 | 活动 | 具体活动 | 活动识别率 | 身份识别率 |
FingerPass[ | 手势 | 手指:向左直线滑动、向右直线滑动、向上直线滑动、向下直线滑动、向左弧度滑动、向右弧度滑动、向中心靠拢、向外方法 | 5,8,88.7% | 5,91.4% |
WiID[ | 手势 | 手臂:推拉、转动、挥手、甩动、开关门、抬手和放下、手臂往前伸,移动到两侧 | 5,7,90%以上 | 5,90% 以上 |
*WiID[ | 日常活动 | 活动:推手、挥手、摆臂、跳跃、行走 | 10,5, 90%以上 | 10,90% 以上 |
方向:推手、缩手、向前走,向后走 | 10,4,90% | |||
Shi[ | 日常活动 | 位置:工作(打字)、开灯、开柜子、拿文件、桌子前吃东西、开微波炉、开冰箱、开门 | 5,8,97.6% | 5,91% |
路线:门口到座位、座位到门口、座位到灯、灯到座位、座位到柜子、柜子到座位、门口到厨房、厨房到门口 | 11,8,98.3% | 11,94% | ||
WiAU[ | 日常活动 | 活动:单手挥舞、高臂挥舞、两手投掷、高抛、画X形、抽签、扔纸、向前踢、向侧边踢、弯腰、鼓掌、行走、打电话、喝水、坐下、向下蹲 | 12,16,90% | 12 (行走活动), 98% |
注:其中活动识别率的表示为(识别人数、活动种类、识别率),身份识别率的表示为(识别人数、识别率)。 |
[1] | 翟黎 . RFID 快速隐私保护认证协议[J]. 软件学报, 2015,26(12): 3215-3222. |
ZHAI L . Fast privacy preserving RFID authentication protocol[J]. Journal of Software, 2015,26(12): 3215-3222. | |
[2] | NGUYEN D L , CAO K , JAIN A K ,et al. Robust Minutiae Extractor:Integrating Deep Networks and Fingerprint Domain Knowledge[C]// International Conference on Biometrics (ICB). Piscataway:IEEE Press, 2018: 9-16. |
[3] | 黄伟庆, 杨召阳, 魏冬 ,等. 基于信息增益的无线通信信号指纹构建及识别机制研究[J]. 信息安全学报, 2020,5(06): 11-26. |
HUANG W Q , YANG Z Y , DAI D ,et al. Fingerprint construction and identity recognition of wireless signal based on information gain[J]. Journal of Cyber Security, 2020,5(06): 11-26. | |
[4] | 明安龙, 马华东, 傅慧源 . 多摄像机监控中基于贝叶斯因果网的人物角色识别[J]. 计算机学报, 2010(12): 170-178. |
MING A L , MA H D , FU Y H . Bayes causal network based method for role identification in multi-camera surveillance[J]. Chinese Journal of Computers, 2010(12): 170-178. | |
[5] | 张力新, 李佳佳, 杨轶星 ,等. 基于热释电红外信息的人体身份识别研究[J]. 仪器仪表学报, 2014. |
ZHANG L X , LI J J , YANG Y X ,et al. Research on human identity recognition based on pyroelectric infrared information[J]. Chinese Journal of Scientific Instrument, 2014(35): 1571-1577. | |
[6] | 吴绍华, 张钦宇, 张乃通 . UWB无线传感器网络中基于匹配滤波检测的TOA估计[J]. 软件学报, 2009,20(11): 3010-3022. |
WU S H , ZHANG X Y , ZHANG N T . TOA estimation based on match-filtering detection for UWB wireless sensor networks[J]. Journal of Software, 2009,20(11): 3010-3022. | |
[7] | 何杰, 吴雅南, 段世红 ,等. 人体对UWB测距误差影响模型[J]. 通信学报, 2017,38(Z1): 58-66. |
HE J , WU Y N , DUAN S H ,et al. Model of human body influence on UWB ranging error[J]. Journal of Communications, 2017,38(Z1): 58-66. | |
[8] | 付琨, 匡纲要, 郁文贤 . 一种合成孔径雷达图像阴影和目标检测的方法[J]. 软件学报, 2002,13(4): 818-826. |
FU K , KUANG G Y , YU W X . A new method of the shadow and target detection of synthetic aperture radar images[J]. Journal of Software, 2002,13(4): 818-826. | |
[9] | POSTOLACHE O , GIRAO P S , POSTOLACHE G ,et al. Cardio-respiratory and daily activity monitor based on FMCW Doppler radar embedded in a wheelchair[C]// Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Boston:IEEE Press, 2011: 1917-1920. |
[10] | SHAO W , SALIM F D , NGUYEN T ,et al. Who opened the room? device-free person identification using bluetooth signals in door access[C]// Green Computing And Communications. Piscataway:IEEE Press, 2017: 68-75. |
[11] | SHAO W , NGUYEN T , QIN K ,et al. BLEDoorGuard:a device-free person identification framework using bluetooth signals for door access[J]. IEEE Internet of Things Journal, 2018,5(6): 5227-5239. |
[12] | 马礼, 王珊婷, 马东超 ,等. 基于稀疏表示的CSI室内定位方法[J]. 软件学报, 2016,27: 21-27. |
MA L , WANG S T , MA D C ,et al. Sparse representation based CSI indoor localization method[J]. Journal of Software, 2016,27: 21-27. | |
[13] | 丁亚三, 郭斌, 辛通 ,等. WiCount:一种基于WiFi-CSI的人数识别方法[J]. 计算机科学, 2019,46(11): 297-303. |
DING Y S , GUO B , XIN T ,et al. WiCount:a crowd counting method based on Wi-Fi channel state information[J]. Computer Science, 2019,46(11): 297-303. | |
[14] | 党小超, 司雄, 郝占军 ,等. 复杂室内环境下基于 CSI 的定位方法[J]. 物联网学报, 2018,2(4): 68-77. |
DANG X C , SI X , HAO Z J ,et al. Indoor localization method based on CSI in complex environment[J]. Chinese Journal on Internet of Things, 2018,2(4): 68-77. | |
[15] | BAHL P , PADMANABHAN V N , VENKATA N.PADMANABHAN . RADAR:an in-building RF-based user location and tracking system[C]// International Conference on Computer Communications. Piscataway:IEEE Press, 2000: 775-784. |
[16] | SEIFELDIN M , SAEED A , KOSBA A E ,et al. Nuzzer:a large-scale device-free passive localization system for wireless environments[J]. IEEE Transactions on Mobile Computing, 2013,12(7): 1321-1334. |
[17] | HALPERIN D , HU W J , SHETH A ,et al. Predictable 802.11 packet delivery from wireless channel measurements[J]. ACM SIGCOMM Computer Communication Review, 2011,41(4): 159-170. |
[18] | XIAO J , WU K S , YI Y W ,et al. FIMD:Fine-grained Device-free Motion Detection[C]// International Conference on Parallel and Distributed Systems. Piscataway:IEEE Press, 2012: 229-235. |
[19] | ZHOU Z M , YANG Z , WU C S ,et al. Towards omnidirectional passive human detection[C]// International Conference on Computer Communications. Piscataway:IEEE Press, 2013: 3057-3065. |
[20] | ZHU H , XIAO F , SUN L J ,et al. R-TTWD:robust device-free through-the-wall detection of moving human with Wi-Fi[J]. IEEE Journal on Selected Areas in Communications, 2017,35(5): 1090-1103. |
[21] | WEN F H , WU K S , ZOU Y P ,et al. WiG:Wi-Fi-based gesture recognition system[C]// Proceedings of the 24th International Conference on Computer Communication and Networks (ICCCN). Piscataway:IEEE Press, 2015: 1-7. |
[22] | TAN S , YANG J . WiFinger:leveraging commodity WiFi for fine-grained finger gesture recognition[C]// Mobile Ad Hoc Networking and Computting. New York:ACM, 2016: 201-210. |
[23] | YANG J F , ZUO H , ZHOU Y X ,et al. Learning gestures from Wi-Fi:a siamese recurrent convolutional architecture[J]. IEEE Internet of Things Journal, 2019,6(6): 10763-10772. |
[24] | WANG Y X , WU K S , LIONEL M NI . WiFall:device-free fall detection by wireless networks[J]. IEEE Transactions on Mobile Computing, 2017,16(2): 581-594. |
[25] | WANG H , ZHANG D Q , WANG Y S ,et al. RT-Fall:A real-time and contactless fall detection system with commodity Wi-Fi devices[J]. IEEE Transactions on Mobile Computing, 2017,16(2): 511-526. |
[26] | ZHANG J , WEI B , HU W ,et al. WiFi-ID:Human identification using Wi-Fi signal[C]// Distributed Computing in Sensor Systems (DCOSS). Piscataway:IEEE Press, 2016: 75-82. |
[27] | 鲁勇, 吕绍和, 王晓东 ,等. 基于WiFi信号的人体行为感知技术研究综述[J]. 计算机学报, 2019,42(02): 3-23. |
LU Y , LV S H , WANG X D ,et al. A survey on WiFi based human behavior analysis technology[J]. Chinese Journal of Computers, 2019,42(02): 3-23. | |
[28] | WU D , ZHANG D Q , XU C R ,et al. Device-free Wi-Fi human sensing:from pattern-based to model-based approaches[J]. IEEE Communications Magazine, 2017,55(10): 91-97. |
[29] | TSE D , VISWANATH P . Fundamentals of wireless communication[M]. Cambridge: Cambridge University Press, 2005. |
[30] | WANG W , LIU A X , SHAHZAD M ,et al. Understanding and modeling of wifi signal based human activity recognition[C]// ACM/IEEE International Conference on Mobile Computing and Networking. New York:ACM, 2015: 65-76. |
[31] | ZHAO J J , LIU L S , WEI Z C ,et al. R-DEHM:CSI-Based robust duration estimation of human motion with WiFi[J]. Sensors, 2019,19(6). |
[32] | XIN T , GUO B , WANG Z ,et al. FreeSense:Indoor Human Identification with Wi-Fi Signals[C]// Global Communications Conference. Piscataway:IEEE Press, 2016: 1-7. |
[33] | NIPU M N , TALUKDER S , ISLAM M S ,et al. Human identification using WIFI signal[C]// International Conference on Informatics Electronics and Vision. Piscataway:IEEE Press, 2018. |
[34] | POKKUNURU A , JAKKALA K , BHUYAN A ,et al. NeuralWave:gait-based user identification through commodity WiFi and deep learning[C]// Conference of the Industrial Electronics Society. Piscataway:IEEE Press, 2018: 758-765. |
[35] | ZENG Y Z , PATHAK P H , MOHAPATRA P . WiWho:wifi-based person identification in smart spaces[C]// Information Processing in Sensor Networks. Piscataway:IEEE Press, 2016. |
[36] | SHI C , LIU J , LIU H B ,et al. Smart user authentication through actuation of daily activities leveraging WiFi-enabled IoT[C]// Mobile Ad Hoc Networking and Computing. NewYork:ACM, 2017. |
[37] | SHAH S W , KANHERE S S . Smart user identification using cardiopulmonary activity[J]. Pervasive and Mobile Computing.NewYork:ACM, 2019,58. |
[38] | WANG W , LIU A X , SHAHZAD M ,et al. Gait recognition using wifi signals[C]. Ubiquitous Computing. NewYork:ACM, 2016: 363-373. |
[39] | HONG F , WANG X , YANG Y N ,et al. WFID:passive device-free human identification using WiFi signal[C]// International Conference on Mobile and Ubiquitous Systems:Networking and Services. New York:ACM Press, 2016: 47-56. |
[40] | CHEN Y Y , DONG W , GAO Y ,et al. Rapid:a multimodal and device-free approach using noise estimation for robust person identification[J]// Proceedings of the ACM on Interactive Mobile Wearable and Ubiquitous Technologies, 2017,1(3): 1-27. |
[41] | XIN T , GUO B , WANG Z ,et al. FreeSense:human-behavior understanding using Wi-Fi signals[J]. Jounal of Ambient Intelligence and Humanized Computing, 2018,9(5): 1611-1622. |
[42] | Lv J G , Yang W , Man D P . Device-free passive identity identification via Wi-Fi signals[J]. Sensors, 2017,17(11): 2520-2537. |
[43] | NKABITI K P , CHEN Y Y , SULTAN K ,et al. A deep bidirectional lstm recurrent neural networks for identifying humans indoors using channel state information[C]// Wireless and Optical Communications Conference. Piscataway:IEEE Press, 2019: 1-5. |
[44] | Bamberg S J , Benbasat A Y , Scarborough D M ,et al. Gait analysis using a shoe-integrated wireless sensor system[C]// International Conference Of The IEEE Engineering In Medicine and Biology Society. Piscataway:IEEE Press, 2008,12(4): 413-423. |
[45] | ZHAO Z W , ZHAO Z F , MIN G Y ,et al. Non-intrusive biometric identification for personalized computing using wireless big data[C]// Ubiquitous intelligence and Computing. Piscataway:IEEE Press, 2018: 901-908. |
[46] | ZOU H , ZHOU Y X , YANG J F ,et al. WiFi-based human identification via convex tensor shapelet learning[C]// National Conference on Artificial Intelligence. Piscataway:IEEE Press, 2018: 1711-1719. |
[47] | WANG J , ZHAO Y N , FAN X X ,et al. Device-free identification using intrinsic CSI features[J]. IEEE Transactions on Vehicular Technology, 2018,67(9): 8571-8581. |
[48] | SHAHZAD M , ZHANG S H . Augmenting user identification with WiFi based gesture recognition[J]. Proceedings of the ACM on Interactive Mobile Wearable & Ubiquitous Technologies, 2018,2(3): 1-27. |
[49] | ZHANG L , WANG C , MA M D ,et al. WiDIGR:direction-independent gait recognition system using commercial Wi-Fi devices[J]. IEEE Internet of Things Journal, 2020,7(2): 1178-1191. |
[50] | XU Q Y , CHEN Y , WANG B B ,et al. Radio biometrics:human recognition through a wall[J]. IEEE Transactions on Information Forensics and Security, 2017,12(5): 1141-1155. |
[51] | WANG D , ZHOU Z Y , YU X D ,et al. CSIID:WiFi-based human identification via deep learning[C]// International Conference on Computer Science and Education. Piscataway:IEEE Press, 2019: 326-330. |
[52] | KORANY B , KARANAM C R , CAI H ,et al. XModal-ID:using wifi for through-wall person identification from candidate video footage[C]// ACM/IEEE International Conference on Mobile Computing and Networking. New York:ACM, 2019. |
[53] | WANG F , HAN J S , LIN F ,et al. WiPIN:Operation-free passive person identification using Wi-Fi signals[J]. 2019 IEEE Global Communications Conference (GLOBECOM).Piscataway:IEEE Press, 2019. |
[54] | LIU J , DONG Y D , CHEN Y Y ,et al. Leveraging breathing for continuous user authentication[C]// Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. New Delhi:ACM, 2018: 786-788. |
[55] | KONG H , LU L , YU J A ,et al. FingerPass:finger gesture-based continuous user authentication for smart homes using commodity WiFi[C]// Mobile Ad Hoc Networking and Computing. New York:ACM, 2019: 201-210. |
[56] | ZHENG R Y , ZHAO Y C , CHEN B . Device-free and robust user identification in smart environment using wifi signal[C]// Ubiquitous Computing. Piscataway:IEEE Press, 2017: 1039-1046. |
[57] | LIN C , HU J Y , SUN Y ,et al. WiAU:an accurate device-free authentication system with resnet[C]// Sensor,Mesh and Ad Hoc Communications and networks. Piscataway:IEEE Press, 2018: 1-9. |
[58] | 胡峰松, 张茂军, 邹北骥 ,等. 基于 HMM 的单样本可变光照、姿态人脸识别[J]. 计算机学报, 2009(07): 1424-1433. |
HU F S , ZHANG M J , ZOU B J ,et al. Pose and illumination invariant face recognition based on HMM with one sample per person[J]. Chinese Journal of Computers, 2009(07): 1424-1433. | |
[59] | 张顺, 龚怡宏, 王进军 . 深度卷积神经网络的发展及其在计算机视觉领域的应用[J]. 计算机学报, 2019,042(003): 453-482. |
ZHANG S , GONG Y H , WANG J J . The development of deep convolution neural network and its applications on computer vision[J]. Chinese Journal of Computers, 2019,042(003): 453-482. | |
[60] | 李月龙, 靳彦, 汪剑鸣 ,等. 人脸特征点提取方法综述[J]. 计算机学报, 2016,39(7): 1356-1374. |
LI Y L , JIN Y , WANG J H ,et al. Face feature points extraction:a review[J]. Chinese Journal of Computers, 2016,39(7): 1356-1374. | |
[61] | Zhao M M , Adib F , Katabi D ,et al. Emotion recognition using wireless signals[C]// ACM/IEEE International Conference on Mobile Computing and Networking. Piscataway:IEEE Press, 2016: 95-108. |
[1] | Jing WU, Sheng LI, Jing ZHANG, Ming XIN, Ruowen TAO, Zhou ZHOU, Lijia PAN, Yi SHI. New flexible sensor for the internet of things [J]. Chinese Journal on Internet of Things, 2023, 7(2): 1-14. |
[2] | Guanglei GENG, Bo GAO, Ke XIONG, Pingyi FAN, Yang LU, Yuwei WANG. A survey of federated learning for 6G networks [J]. Chinese Journal on Internet of Things, 2023, 7(2): 50-66. |
[3] | Bin SHEN, Yinbo LI, Xiaowei LIANG. Spectrum access control for cognitive internet of things users based on enhanced weighted centroid localization [J]. Chinese Journal on Internet of Things, 2023, 7(1): 93-108. |
[4] | Jun SUN, Shangweikang ZHAO. Energy-saving computation offloading scheme based on Sarsa algorithm in industrial internet of things [J]. Chinese Journal on Internet of Things, 2022, 6(3): 82-90. |
[5] | Zaichen ZHANG, Xiaohu YOU, Jian DANG, Liang WU, Bingcheng ZHU, Ji CHEN, Lei WANG. Optical wireless communication and internet of things [J]. Chinese Journal on Internet of Things, 2022, 6(3): 1-13. |
[6] | Nuo HUANG, Weijie LIU, Chen GONG. Industrial IoT oriented petahertz communication [J]. Chinese Journal on Internet of Things, 2022, 6(3): 37-46. |
[7] | Wei WANG, Renqian GU, Li3 PENG, Jijun ZHAO, Zhongcheng WEI, Cunxi CHANG. Robust optimization of air based relay for internet of things based on UAV [J]. Chinese Journal on Internet of Things, 2022, 6(1): 101-112. |
[8] | Mingjuan WU, Shuyi CHEN, Haitao LIU. Study of international standard ISO/IEC 30144: 2020 applied in intelligent substation auxiliary monitoring [J]. Chinese Journal on Internet of Things, 2022, 6(1): 123-132. |
[9] | Hao JIANG, Hongming CHEN, Yilong CAO, Haoyang CUI. Comparison of MIMO based on high capacity LPWAN technology TurMassTM and LoRa [J]. Chinese Journal on Internet of Things, 2021, 5(4): 54-61. |
[10] | Yinghai XIE, Yu ZHANG. Electricity meter area identification technology based on channel coding theory [J]. Chinese Journal on Internet of Things, 2021, 5(4): 137-144. |
[11] | Yiyang HU, Lina QI. Channel estimation method of massive MIMO-OFDM system based on adaptive compressed sensing [J]. Chinese Journal on Internet of Things, 2021, 5(3): 78-85. |
[12] | Wei WANG, Yajing LIANG, Li PENG, Zhongcheng WEI, Jijun ZHAO. Node clustered deployment of emergency Internet of things based on UAV with equipment access restriction [J]. Chinese Journal on Internet of Things, 2021, 5(3): 97-105. |
[13] | Ling TAN, Shanshan RONG, Jingming XIA, Sarker SAJIB, Wenjie MA. Real-time diagnosis of multi-category skin diseases based on IR-VGG [J]. Chinese Journal on Internet of Things, 2021, 5(3): 115-125. |
[14] | Siqi SUN. Analysis and prospects of the development of the industrial Internet in the petrochemical industry [J]. Chinese Journal on Internet of Things, 2021, 5(3): 126-132. |
[15] | Haoran LIANG, Jun WU, Chengcheng ZHAO, Jianhua LI. Leveraging edge learning and game theory for intrusion detection in Internet of things [J]. Chinese Journal on Internet of Things, 2021, 5(2): 37-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|