Chinese Journal on Internet of Things ›› 2023, Vol. 7 ›› Issue (2): 1-14.doi: 10.11959/j.issn.2096-3750.2023.00294
• Topic: Intellisense Technology • Next Articles
Jing WU1,2, Sheng LI1,2, Jing ZHANG1,2, Ming XIN1,2, Ruowen TAO1,2, Zhou ZHOU1,2, Lijia PAN1,2, Yi SHI1,2
Revised:
2022-08-29
Online:
2023-06-30
Published:
2023-06-01
Supported by:
CLC Number:
Jing WU, Sheng LI, Jing ZHANG, Ming XIN, Ruowen TAO, Zhou ZHOU, Lijia PAN, Yi SHI. New flexible sensor for the internet of things[J]. Chinese Journal on Internet of Things, 2023, 7(2): 1-14.
[1] | JUNG M , KIM K , KIM B ,et al. Paper-based bimodal sensor for electronic skin applications[J]. ACS Applied Materials & Interfaces, 2017,9(32): 26974-26982. |
[2] | WANG C Y , XIA K L , ZHANG M C ,et al. An all-silk-derived dual-mode E-skin for simultaneous temperature-pressure detection[J]. ACS Applied Materials & Interfaces, 2017,9(45): 39484-39492. |
[3] | ZHAO S , ZHU R . Flexible bimodal sensor for simultaneous and independent perceiving of pressure and temperature stimuli[J]. Advanced Materials Technologies, 2017,2(11): 1700183. |
[4] | LIMAN M L R , ISLAM M T , HOSSAIN M M . Mapping the progress in flexible electrodes for wearable electronic textiles:materials,durability,and applications[J]. Advanced Electronic Materials, 2022,8(1). |
[5] | KRISHNAMURTHI R , KUMAR A , GOPINATHAN D ,et al. An overview of IoT sensor data processing,fusion,and analysis techniques[J]. Sensors, 2020,20(21). |
[6] | MCEVOY M A , CORRELL N . Materials science.materials that couple sensing,actuation,computation,and communication[J]. Science, 2015,347(6228): 1261689. |
[7] | ZHU C S , LEUNG V C M , SHU L ,et al. Green internet of things for smart world[J]. IEEE Access, 2015(3): 2151-2162. |
[8] | ALSHEHRI F , MUHAMMAD G . A comprehensive survey of the internet of things(IoT) and AI-based smart healthcare[J]. IEEE Access, 2021(9): 3660-3678. |
[9] | RISTESKA B L , TRIVODALIEV K V . A review of internet of things for smart home:challenges and solutions[J]. Journal of Cleaner Production, 2017(140): 1454-1464. |
[10] | WANG A H , WANG P S , MIAO X Q ,et al. A review on non-terrestrial wireless technologies for smart city internet of things[J]. International Journal of Distributed Sensor Networks, 2020,16(6): 155014772093682. |
[11] | KIM K B , JANG W , CHO J Y ,et al. Transparent and flexible piezoelectric sensor for detecting human movement with a boron nitride nanosheet (BNNS)[J]. Nano Energy, 2018(54): 91-98. |
[12] | JUNG W S , LEE M J , KANG M Y ,et al. Powerful curved piezoelectric generator for wearable applications[J]. Nano Energy, 2015(13): 174-181. |
[13] | 姚宽明, 姚靖仪, 海照 ,等. 用于触觉感知的自供能可拉伸压电橡胶皮肤电子器件[J]. 物理学报, 2020,69(17): 178701. |
YAO K M , YAO J Y , HAI Z ,et al. Stretchable self-powered epidermal electronics from piezoelectric rubber for tactile sensing[J]. Acta Physica Sinica, 2020,69(17): 178701. | |
[14] | ZHANG D Z , WANG D Y , XU Z Y ,et al. Diversiform sensors and sensing systems driven by triboelectric and piezoelectric nanogenerators[J]. Coordination Chemistry Reviews, 2021(427): 213597. |
[15] | KIM S L , CHOI K , TAZEBAY A ,et al. Flexible power fabrics made of carbon nanotubes for harvesting thermoelectricity[J]. ACS Nano, 2014,8(3): 2377-2386. |
[16] | LV H C , LIANG L R , ZHANG Y C ,et al. A flexible spring-shaped architecture with optimized thermal design for wearable thermoelectric energy harvesting[J]. Nano Energy, 2021(88): 106260. |
[17] | 柳冈, 王铁 . 基于热电材料的新型传感器研究进展[J]. 化学学报, 2017,75(11): 1029-1035. |
LIU G , WANG T . Research progress in thermoelectric materials for sensor application[J]. Acta Chimica Sinica, 2017,75(11): 1029-1035. | |
[18] | PARK S , HEO S W , LEE W ,et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics[J]. Nature, 2018,561(7724): 516-521. |
[19] | THOSTENSON J O , LI Z , KIM C H J ,et al. Integrated flexible conversion circuit between a flexible photovoltaic and supercapacitors for powering wearable sensors[J]. Journal of the Electrochemical Society, 2018,165(8): B3122-B3129. |
[20] | LIU X L , ZHAO Y , WANG W J ,et al. Photovoltaic self-powered gas sensing:areview[J]. IEEE Sensors Journal, 2021,21(5): 5628-5644. |
[21] | KHAN Y , OSTFELD A E , LOCHNER C M ,et al. Monitoring of vital signs with flexible and wearable medical devices[J]. Advanced Materials (Deerfield Beach,Fla), 2016,28(22): 4373-4395. |
[22] | WANG L R , XU T L , ZHANG X J . Multi functional conductive hydrogel-based flexible wearable sensors[J]. TrAC Trends in Analytical Chemistry, 2021(134): 116130. |
[23] | HAN S T , PENG H Y , SUN Q J ,et al. An overview of the development of flexible sensors[J]. Advanced Materials, 2017,29(33): 1700375. |
[24] | LI S , MA Z , CAO Z L ,et al. Advanced wearable microfluidic sensors for healthcare monitoring[J]. Small, 2020,16(9): 1903822. |
[25] | SEGEV-BAR M , HAICK H . Flexible sensors based on nanoparticles[J]. ACS Nano, 2013,7(10): 8366-8378. |
[26] | 赵帅, 朱荣 . 多感知集成的柔性电子皮肤[J]. 化学学报, 2019,77(12): 1250-1262. |
ZHAO S , ZHU R . Flexible electronic skin with multisensory integration[J]. Acta Chimica Sinica, 2019,77(12): 1250-1262. | |
[27] | TIENN T , JEON S , KIM D I ,et al. A flexible bimodal sensor array for simultaneous sensing of pressure and temperature[J]. Advanced Materials, 2014,26(5): 796-804. |
[28] | ZHANG F J , ZANG Y P , HUANG D Z ,et al. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials[J]. Nature Communications, 2015(6): 8356. |
[29] | NAKATA S , ARIE T , AKITA S ,et al. Wearable,flexible,and multifunctional healthcare device with an ISFET chemical sensor for simultaneous sweat pH and skin temperature monitoring[J]. ACS Sensors, 2017,2(3): 443-448. |
[30] | HUA Q L , SUN J L , LIU H T ,et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing[J]. Nature Communications, 2018(9): 244. |
[31] | GAO W , EMAMINEJAD S , NYEIN H Y Y ,et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J]. Nature, 2016,529(7587): 509-514. |
[32] | LEE S , FRANKLIN S , HASSANI F A ,et al. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference[J]. Science, 2020,370(6519): 966-970. |
[33] | WIOREK A , PARRILLA M , CUARTERO M ,et al. Epidermal patch with glucose biosensor:pH and temperature correction toward more accurate sweat analysis during sport practice[J]. Analytical Chemistry, 2020,92(14): 10153-10161. |
[34] | ZHAO S , ZHU R . Electronic skin with multifunction sensors based on thermosensation[J]. Advanced Materials, 2017,29(15): 1606151. |
[35] | JIAN M Q , XIA K L , WANG Q ,et al. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures[J]. Advanced Functional Materials, 2017,27(9): 1606066. |
[36] | JUNG Y H , PARK B , KIM J U ,et al. Bioinspired electronics for artificial sensory systems[J]. Advanced Materials, 2019,31(34): 1803637. |
[37] | CAI Y W , ZHANG X N , WANG G G ,et al. A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for E-skin[J]. Nano Energy, 2021(81): 105663. |
[38] | GAO Y J , OTA H , SCHALER E W ,et al. Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring[J]. Advanced Materials, 2017,29(39): 1701985. |
[39] | YANG T T , XIE D , LI Z H ,et al. Recent advances in wearable tactile sensors:Materials,sensing mechanisms,and device performance[J]. Materials Science and Engineering:R:Reports, 2017(115): 1-37. |
[40] | ZHONG W B , LIU Q Z , WU Y Z ,et al. A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability[J]. Nanoscale, 2016,8(24): 12105-12112. |
[41] | PARK J , KIM M , LEE Y ,et al. Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli[J]. Science Advances, 2015,1(9): e1500661. |
[42] | LEI Z Y , WU P Y . A supramolecular biomimetic skin combining a wide spectrum of mechanical properties and multiple sensory capabilities[J]. Nature Communications, 2018,9(1): 1134. |
[43] | BOUTRY C M , NEGRE M , JORDA M ,et al. A hierarchically patterned,bioinspired e-skin able to detect the direction of applied pressure for robotics[J]. Science Robotics, 2018,3(24): eaau6914. |
[44] | ZHU B , LIU J Z , CAULEY S F ,et al. Image reconstruction by domain-transform manifold learning[J]. Nature, 2018,555(7697): 487-492. |
[45] | KO H C , STOYKOVICH M P , SONG J Z ,et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics[J]. Nature, 2008,454(7205): 748-753. |
[46] | GU L L , PODDAR S , LIN Y J ,et al. A biomimetic eye with a hemispherical perovskite nanowire array retina[J]. Nature, 2020,581(7808): 278-282. |
[47] | ZHANG L , PASTHUKOVA N , YAO Y F ,et al. Self-suspended nanomesh scaffold for ultrafast flexible photodetectors based on organic semiconducting crystals[J]. Advanced Materials, 2018,30(28): 1801181. |
[48] | DENG W , ZHANG X J , JIA R F ,et al. Organic molecular crystal-based photosynaptic devices for an artificial visual-perception system[J]. NPG Asia Materials, 2019,11:77. |
[49] | ZHOU F C , ZHOU Z , CHEN J W ,et al. Optoelectronic resistive random access memory for neuromorphic vision sensors[J]. Nature Nanotechnology, 2019,14(8): 776-782. |
[50] | ESCUDER-GILABERT L , PERIS M . Review:highlights in recent applications of electronic tongues in food analysis[J]. Analytica Chimica Acta, 2010,665(1): 15-25. |
[51] | KRANTZ-RüLCKER C , STENBERG M , WINQUIST F ,et al. Electronic tongues for environmental monitoring based on sensor arrays and pattern recognition:a review[J]. Analytica Chimica Acta, 2001,426(2): 217-226. |
[52] | SON M , LEE J Y , KO H J ,et al. Bioelectronic nose:an emerging tool for odor standardization[J]. Trends in Biotechnology, 2017,35(4): 301-307. |
[53] | WASILEWSKI T , G?BICKI J , KAMYSZ W . Advances in olfaction-inspired biomaterials applied to bioelectronic noses[J]. Sensors and Actuators B:Chemical, 2018(257): 511-537. |
[54] | GUO L L , WANG T , WU Z H ,et al. Portable food-freshness prediction platform based on colorimetric barcode combinatorics and deep convolutional neural networks[J]. Advanced Materials, 2020,32(45): 2004805. |
[55] | GANCARZ M , MALAGA-TOBO?A U , ONISZCZUK A ,et al. Detection and measurement of aroma compounds with the electronic nose and a novel method for MOS sensor signal analysis during the wheat bread making process[J]. Food and Bioproducts Processing, 2021,(127): 90-98. |
[56] | ZHU J X , CHO M , LI Y T ,et al. Biomimetic turbinate-like artificial nose for hydrogen detection based on 3D porous laser-induced graphene[J]. ACS Applied Materials & Interfaces, 2019,11(27): 24386-24394. |
[57] | WU C S , DU Y W , HUANG L Q ,et al. Biomimetic sensors for the senses:towards better understanding of taste and odor sensation[J]. Sensors (Basel,Switzerland), 2017,17(12): 2881. |
[58] | MOHAMADZADE B , HASHMI R M , SIMORANGKIR R B V B ,et al. Recent advances in fabrication methods for flexible antennas in wearable devices:state of the art[J]. Sensors (Basel,Switzerland), 2019,19(10): 2312. |
[59] | PARK J , KIM J , KIM S Y ,et al. Soft,smart contact lenses with integrations of wireless circuits,glucose sensors,and displays[J]. Science Advances, 2018,4(1): eaap9841. |
[60] | DENG W L , YANG T , JIN L ,et al. Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures[J]. Nano Energy, 2019,55: 516-525. |
[61] | CHU Y , ZHONG J W , LIU H L ,et al. Human pulse diagnosis for medical assessments using a wearable piezoelectret sensing system[J]. Advanced Functional Materials, 2018,28(40): 1803413. |
[62] | HANO Y , TIAN J J , SUN G L ,et al. Self-powered pulse sensor for antidiastole of cardiovascular disease[J]. Advanced Materials, 2017,29(40): 1703456. |
[63] | TIAN X , LEE P M , TAN Y J ,et al. Wireless body sensor networks based on metamaterial textiles[J]. Nature Electronics, 2019,2(6): 243-251. |
[64] | GAO X Y , WU J G , YU Y ,et al. Giant piezoelectric coefficients in relaxor piezoelectric ceramic PNN-PZT for vibration energy harvesting[J]. Advanced Functional Materials, 2018,28(30): 1706895. |
[65] | WANG H , WANG J H , HE T ,et al. Direct muscle stimulation using diode-amplified triboelectric nanogenerators (TENGs)[J]. Nano Energy, 2019(63): 103844. |
[66] | DUAN J J , FENG G , YU B Y ,et al. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest[J]. Nature Communications, 2018(9): 5146. |
[67] | LIN Y J , CHEN J Q , TAVAKOLI M M ,et al. Printable fabrication of a fully integrated and self-powered sensor system on plastic substrates[J]. Advanced Materials, 2019,31(5): 1804285. |
[68] | NAN K W , KANG S D , LI K ,et al. Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices[J]. Science Advances, 2018,4(11): eaau5849. |
[69] | LIU Y Q , SUN N , LIU J W ,et al. Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops[J]. ACS Nano, 2018,12(3): 2893-2899. |
[70] | LAI Y C , DENG J N , ZHANG S L ,et al. Single-thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth-based self-powered human-interactive and biomedical sensing[J]. Advanced Functional Materials, 2017,27(1): 1604462. |
[71] | DONG L , WEN C S , LIU Y ,et al. Piezoelectric buckled beam array on a pacemaker lead for energy harvesting[J]. Advanced Materials Technologies, 2019,4(1): 1800335. |
[72] | LI N , YI Z R , MA Y ,et al. Direct powering a real cardiac pacemaker by natural energy of a heartbeat[J]. ACS Nano, 2019,13(3): 2822-2830. |
[73] | HWANG G T , KIM Y , LEE J H ,et al. Self-powered deep brain stimulation via a flexible PIMNT energy harvester[J]. Energy & Environmental Science, 2015,8(9): 2677-2684. |
[74] | BOUTRY C M , BEKER L , KAIZAWA Y ,et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow[J]. Nature Biomedical Engineering, 2019,3(1): 47-57. |
[75] | 王童, 温娟, 吕康 ,等. 仿生生物感官的感存算一体化系统[J]. 物理学报, 2022,71(14): 148702. |
WANG T , WEN J , LYU K ,et al. Bio-inspired sensory systems with integrated capabilities of sensing,data storage,and processing[J]. Acta Physica Sinica, 2022,71(14): 148702. | |
[76] | LI S , LYU H B , LI J A ,et al. Multiterminal ionic synaptic transistor with artificial blink reflex function[J]. IEEE Electron Device Letters, 2021,42(3): 351-354. |
[77] | LI S , LYU H B , ZHOU Y L ,et al. Artificial reflex arc:an environment-adaptive neuromorphic camouflage device[J]. IEEE Electron Device Letters, 2021,42(8): 1224-1227. |
[78] | YI Z K , ZHANG Y L , PETERS J . Biomimetic tactile sensors and signal processing with spike trains:a review[J]. Sensors and Actuators A:Physical, 2018(269): 41-52. |
[79] | 蒋子寒, 柯硕, 祝影 ,等. 柔性神经形态晶体管及其仿生感知应用[J]. 物理学报, 2022,71(14): 147301. |
JIANG Z H , KE S , ZHU Y ,et al. Flexible neuromorphic transistors and their biomimetric sensing application[J]. Acta Physica Sinica, 2022,71(14): 147301. | |
[80] | KIM Y , CHORTOS A , XU W T ,et al. A bioinspired flexible organic artificial afferent nerve[J]. Science, 2018,360(6392): 998-1003. |
[81] | ISKAROUS M M , THAKOR N V . E-skins:biomimetic sensing and encoding for upper limb prostheses[J]. Proceedings of the IEEE, 2019,107(10): 2052-2064. |
[82] | MICHAUD H O , DEJACE L , DE MULATIER S ,et al. Design and functional evaluation of an epidermal strain sensing system for hand tracking[C]// Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway:IEEE Press, 2016: 3186-3191. |
[83] | DEJACE L , LAUBEUF N , FURFARO I ,et al. Gallium-based thin films for wearable human motion sensors[J]. Advanced Intelligent Systems, 2019,1(5): 1900079. |
[84] | OH S , CHO J I , LEE B H ,et al. Flexible artificial Si-In-Zn-O/ion gel synapse and its application to sensory-neuromorphic system for sign language translation[J]. Science Advances, 2021,7(44): eabg9450. |
[85] | KIM S H , BAEK G W , YOON J ,et al. A bioinspired stretchable sensory-neuromorphic system[J]. Advanced Materials, 2021,33(44): 2104690. |
[86] | LIU H C , DONG W , LI Y F ,et al. An epidermal sEMG tattoo-like patch as a new human-machine interface for patients with loss of voice[J]. Microsystems & Nanoengineering, 2020(6): 16. |
[87] | ZHAN Y Q , MEI Y F , ZHENG L R . Materials capability and device performance in flexible electronics for the Internet of Things[J]. JMaterChem C, 2014,2(7): 1220-1232. |
[1] | Guanglei GENG, Bo GAO, Ke XIONG, Pingyi FAN, Yang LU, Yuwei WANG. A survey of federated learning for 6G networks [J]. Chinese Journal on Internet of Things, 2023, 7(2): 50-66. |
[2] | Bin SHEN, Yinbo LI, Xiaowei LIANG. Spectrum access control for cognitive internet of things users based on enhanced weighted centroid localization [J]. Chinese Journal on Internet of Things, 2023, 7(1): 93-108. |
[3] | Jun SUN, Shangweikang ZHAO. Energy-saving computation offloading scheme based on Sarsa algorithm in industrial internet of things [J]. Chinese Journal on Internet of Things, 2022, 6(3): 82-90. |
[4] | Zaichen ZHANG, Xiaohu YOU, Jian DANG, Liang WU, Bingcheng ZHU, Ji CHEN, Lei WANG. Optical wireless communication and internet of things [J]. Chinese Journal on Internet of Things, 2022, 6(3): 1-13. |
[5] | Nuo HUANG, Weijie LIU, Chen GONG. Industrial IoT oriented petahertz communication [J]. Chinese Journal on Internet of Things, 2022, 6(3): 37-46. |
[6] | Wei WANG, Renqian GU, Li3 PENG, Jijun ZHAO, Zhongcheng WEI, Cunxi CHANG. Robust optimization of air based relay for internet of things based on UAV [J]. Chinese Journal on Internet of Things, 2022, 6(1): 101-112. |
[7] | Mingjuan WU, Shuyi CHEN, Haitao LIU. Study of international standard ISO/IEC 30144: 2020 applied in intelligent substation auxiliary monitoring [J]. Chinese Journal on Internet of Things, 2022, 6(1): 123-132. |
[8] | Hao JIANG, Hongming CHEN, Yilong CAO, Haoyang CUI. Comparison of MIMO based on high capacity LPWAN technology TurMassTM and LoRa [J]. Chinese Journal on Internet of Things, 2021, 5(4): 54-61. |
[9] | Zhongcheng WEI, Xinqiu ZHANG, Bin LIAN, Wei WANG, Jijun ZHAO. A survey on Wi-Fi signal based identification technology [J]. Chinese Journal on Internet of Things, 2021, 5(4): 107-119. |
[10] | Yinghai XIE, Yu ZHANG. Electricity meter area identification technology based on channel coding theory [J]. Chinese Journal on Internet of Things, 2021, 5(4): 137-144. |
[11] | Yiyang HU, Lina QI. Channel estimation method of massive MIMO-OFDM system based on adaptive compressed sensing [J]. Chinese Journal on Internet of Things, 2021, 5(3): 78-85. |
[12] | Wei WANG, Yajing LIANG, Li PENG, Zhongcheng WEI, Jijun ZHAO. Node clustered deployment of emergency Internet of things based on UAV with equipment access restriction [J]. Chinese Journal on Internet of Things, 2021, 5(3): 97-105. |
[13] | Ling TAN, Shanshan RONG, Jingming XIA, Sarker SAJIB, Wenjie MA. Real-time diagnosis of multi-category skin diseases based on IR-VGG [J]. Chinese Journal on Internet of Things, 2021, 5(3): 115-125. |
[14] | Siqi SUN. Analysis and prospects of the development of the industrial Internet in the petrochemical industry [J]. Chinese Journal on Internet of Things, 2021, 5(3): 126-132. |
[15] | Haoran LIANG, Jun WU, Chengcheng ZHAO, Jianhua LI. Leveraging edge learning and game theory for intrusion detection in Internet of things [J]. Chinese Journal on Internet of Things, 2021, 5(2): 37-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|