[1] |
陈思远, 白昱阳, 张俊 ,等. 基于区块链和通证经济的跨国跨洲电力市场机制设计[J]. 智能科学与技术学报, 2019,1(1): 96-105.
|
|
CHEN S Y , BAI Y Y , ZHANG J ,et al. Design of transnational and intercontinental electricity market with blockchain and token economics[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(1): 96-105.
|
[2] |
郭创新, 王惠如, 张伊宁 ,等. 面向区域能源互联网的“源-网-荷”协同规划综述[J]. 电网技术, 2019,43(9): 3071-3080.
|
|
GUO C X , WANG H R , ZHANG Y N ,et al. Review of“source-grid-load” co-planning orienting to regional energy Internet[J]. Power System Technology, 2019,43(9): 3071-3080.
|
[3] |
郑玉平, 王丹, 万灿 ,等. 面向新型城镇的能源互联网关键技术及应用[J]. 电力系统自动化, 2019,43(14): 2-15.
|
|
ZHENG Y P , WANG D , WAN C ,et al. Key technologies and applications of energy Internet[J]. Automation of Electric Power Systems, 2019,43(14): 2-15.
|
[4] |
MIRANGEIGI M , IMANEINI H . Hybrid modulation technique for grid-connected cascaded photovoltaic systems[J]. IEEE Transactions on Industrial Electronics, 2016,63(12): 7843-7853.
|
[5] |
侯国莲, 弓林娟, 苏烨 ,等. 基于 ACP 的平行发电控制系统[J]. 智能科学与技术学报, 2019,1(3): 269-279.
|
|
HOU G L , GONG L J , SU Y ,et al. ACP based parallel power generation control system[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(3): 269-279.
|
[6] |
孙秋野, 胡旌伟, 张化光 . 能源互联网中自能源的建模与应用[J]. 中国科学:信息科学, 2018,48(10): 1409-1429.
|
|
SUN Q Y , HU J W , ZHANG H G . Modeling and application of we-energy in energy Internet[J]. Scientia Sinica (Informationis), 2018,48(10): 1409-1429.
|
[7] |
周林, 郭珂, 刘强 ,等. 光伏电池工程用数学模型研究[J]. 电工技术学报, 2011,26(10): 211-216.
|
|
ZHOU L , GUO K , LIU Q ,et al. Research on engineering analytical model of solar cells[J]. Transactions of China Electrotechnical Society, 2011,26(10): 211-216.
|
[8] |
师楠, 周苏荃, 李一丹 ,等. 基于 Bezier 函数的光伏电池建模[J]. 电网技术, 2015,39(8): 2195-2200.
|
|
SHI N , ZHOU S Q , LI Y D ,et al. PV cell modeling based on Bezier function[J]. Power System Technology, 2015,39(8): 2195-2200.
|
[9] |
徐岩, 高兆, 朱晓荣 . 基于混合蛙跳算法的光伏阵列参数辨识方法[J]. 太阳能学报, 2019,40(7): 1903-1911.
|
|
XU Y , GAO Z , ZHU X R . Parameter identification method of phootovoltaic array based on shuffled frog leaping algorithm[J]. Acta Enerciae Solaris Sinica, 2019,40(7): 1903-1911.
|
[10] |
CHATTERJEE A , KEYHANI A , KAPOOR D . Identification of photovoltaic source models[J]. IEEE Transactions on Energy Conversion, 2011,26(3): 883-889.
|
[11] |
JING J S , LOW K S . Photovoltaic model identification using particle swarm optimization with inverse barrier constraint[J]. IEEE Transactions on Power Electronics, 2012,27(9): 3975-3983.
|
[12] |
程泽, 董梦男, 杨添剀 ,等. 基于自适应混沌粒子群算法的光伏电池模型参数辨识[J]. 电工技术学报, 2014,29(9): 245-252.
|
|
CHENG Z , DONG M N , YANG T K ,et al. Extraction of solar cell based on self-adaptive chaos particle swarm optimization algorithm[J]. Transactions of China Electrotechnical Society, 2014,29(9): 245-252.
|
[13] |
沈赋, 尹斌, 孙维广 . 基于单神经元自适应 PID 的光伏发电MPPT[J]. 电力系统及其自动化学报, 2017,29(2): 89-95.
|
|
SHEN F , YIN B , SUN W G . Single-neuron adaptive PID control in MPPT of photovoltaic generation[J]. Proceedings of the CSUEPSA, 2017,29(2): 89-95.
|
[14] |
胡桂廷, 仲程超, 张伟君 ,等. 基于模型辨识的BP神经网络在光伏系统MPPT中的应用[J]. 计算机测量与控制, 2017,25(10): 213-216.
|
|
HU G T , ZHONG C C , ZHANG W J ,et al. Application of BP neural network based on model identification in photovoltaic system MPPT[J]. Computer Measurement & Control, 2017,25(10): 213-216.
|
[15] |
杨东海, 刘洋, 王毅 ,等. 基于二进制蚁群模糊神经网络的光伏系统MPPT控制算法研究[J]. 电气工程学报, 2017,12(6): 41-46.
|
|
YANG D H , LIU Y , WANG Y ,et al. Research on MPPT control algorithm of photovoltaic system by binary ant colony algorithm and fuzzy neural network[J]. Journal of Electrical Engineering, 2017,12(6): 41-46.
|
[16] |
张晓强, 刘宜罡, 邹应全 ,等. 基于自适应神经网络控制的光伏MPPT算法改进[J]. 太阳能学报, 2019,40(11): 3091-3102.
|
|
ZHANG X Q , LIU Y G , ZOU Y Q ,et al. An enchanced photovoltaic MPPT approach based on adaptive neural network control[J]. Journal of Electrical Engineering, 2017,40(11): 3091-3102.
|
[17] |
WANG H Z , YI H Y , PENG J C ,et al. Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network[J]. Energy Conversion and Management, 2017(153): 409-422.
|
[18] |
赵康宁, 蒲天骄, 王新迎 ,等. 基于改进贝叶斯神经网络的光伏出力概率预测[J]. 电网技术, 2019,43(12): 4377-4386.
|
|
ZHAO K N , PU T J , WANG X Y ,et al. Probabilistic forecasting for photovoltaic power based on improved bayesian neural network[J]. Power System Technology, 2019,43(12): 4377-4386.
|
[19] |
CHOU K Y , YANG S T , CHEN A Y . Maximum power point tracking of photovoltaic system based on reinforcement learning[J]. Sensors (Basel), 2019,19(22):5054.
|
[20] |
ZHANG X S , LI S N , HE T Y ,et al. Memetic reinforcement learning based maximum power point[J]. Energy, 2019,174(C): 1079-1090.
|
[21] |
杨元培, 杨奕, 王建山 ,等. 光伏发电传输最大功率储能优化建模仿真[J]. 计算机仿真, 2017,34(9): 103-108.
|
|
YANG Y P , YANG Y , WANG J S ,et al. Model and simulation of the in photovoltaic power energy storage optimization power generation transmission[J]. Computer Simulation, 2017,34(9): 103-108.
|
[22] |
陈如亮, 崔岩, 李大勇 ,等. 光照不均匀情况下光伏组件仿真模型的研究[J]. 系统仿真学报, 2008,20(7): 1681-1690.
|
|
CHEN R L , CUI Y , LI D Y ,et al. Study on simulation model of PV module under non-uniform insolation[J]. Journal of System Simulation, 2008,20(7): 1681-1690.
|
[23] |
吴登盛, 王立地, 刘通 ,等. 基于神经网络的光伏阵列多峰 MPPT的研究[J]. 电测与仪表, 2019,56(7): 69-74.
|
|
WU D S , WANG L D , LIU T ,et al. Research on multi-peak MPPT of PV array based on neural network[J]. Electrical Measurement & Instrumentation, 2019,56(7): 69-74.
|
[24] |
王云平, 阮新波, 李颖 . 不均匀光照光伏单元串联电路快速 MPPT方法[J]. 中国电机工程学报, 2015,35(19): 4870-4878.
|
|
WANG Y P , RUAN X B , LI Y . A rapid hacking method of maximum power point for solar units in series under uneven solar irradiance[J]. Proceedings of the CSEE, 2015,35(19): 4870-4878.
|
[25] |
乐全明, 赵健, 郭力 . 不均匀光照条件下太阳能电池串联电路特性分析及GMPPT控制[J]. 光子学报, 2017,46(6): 214-224.
|
|
YUE Q M , ZHAO J , GUO L . Analysis of dynamic characteristic for solar arrays in series and GMPPT control[J]. Acta Photonica Sinica, 2017,46(6): 214-224.
|
[26] |
REHMAN S , TU S S , WAQAS M ,et al. Unsupervised pre-trained filter learning approach for efficient convolution neural network[J]. Neurocomputing, 2019(365): 171-190.
|
[27] |
ZHANG J M , WU Y . Complex-valued unsupervised convolutional neural networks for sleep stage classification[J]. Computer Methods and Programs in Biomedicine, 2018(164): 181-191.
|
[28] |
AMORIMA W P , TETILAB E C , PISTORIB H ,et al. Semi-supervised learning with convolutional neural networks for UAV images automatic recognition[J]. Computers and Electronics in Agriculture, 2019,(164):104932.
|
[29] |
AHN E , KUMAR A , FULHAM M ,et al. Convolutional sparse kernel network for unsupervised medical image analysis[J]. Medical Image Analysis, 2019(56): 140-151.
|
[30] |
文常保, 马文博, 刘鹏里 . 基于改进遗传算法的RBF神经网络结构优化研究[J]. 计算机工程与科学, 2019,43(5): 917-923.
|
|
WEN C B , MA W B , LIU P L . Research on structure optimization of RBF neural network based on improved genetic algorithm[J]. Computer Engineering & Science, 2019,43(5): 917-923.
|
[31] |
JIA W K , ZHAO D , DING L . An optimized RBF neural network algorithm based on partial least squares and genetic algorithm for classification of small sample[J]. Applied Soft Computing, 2016(48): 373-184.
|