[24] |
TALO M , BALOGLU U B , YILDIRIM ? ,et al. Application of deep transfer learning for automated brain abnormality classification using MR images[J]. Cognitive Systems Research, 2019,54: 176-188.
|
[25] |
TAYLOR L , NITSCHKE G . Improving deep learning with generic data augmentation[C]// Proceedings of 2018 IEEE Symposium Series on Computational Intelligence. Piscataway:IEEE Press, 2019: 1542-1547.
|
[26] |
ZHONG Z , ZHENG L , KANG G ,et al. Random erasing data augmentation[C]// Proceedings of the AAAI Conference on Artificial Intelligence.[S.l.:s.n.], 2020,34(7): 13001-13008.
|
[27] |
Asuncion A , Newman D Asuncion A,Newman D.UCL machine learning repository[Z]. 2007.
|
[28] |
YUN S , HAN D , CHUN S ,et al. CutMix:regularization strategy to train strong classifiers with localizable features[C]// Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE Press, 2020: 6022-6031.
|
[29] |
GONG C Y , WANG D L , LI M ,et al. KeepAugment:a simple information-preserving data augmentation approach[C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2021: 1055-1064.
|
[30] |
UDDIN A F M S , MONIRA M S , SHIN W ,et al. SaliencyMix:a saliency guided data augmentation strategy for better regularization[J]. arXiv preprint, 2020,arXiv:2006.01791.
|
[31] |
PARK J , YANG J Y , SHIN J ,et al. Saliency grafting:innocuous attribution-guided mixup with calibrated label mixing[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022,36(7): 7957-7965.
|
[32] |
SELVARAJU R R , COGSWELL M , DAS A ,et al. Grad-CAM:visual explanations from deep networks via gradient-based localization[C]// Proceedings of 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2017: 618-626.
|
[33] |
YAN C G , ZANG Y F . DPARSF:a MATLAB toolbox for “pipeline”data analysis of resting-state fMRI[J]. Frontiers in Systems Neuroscience, 2010,4:13.
|
[34] |
SONG X W , DONG Z Y , LONG X Y ,et al. REST:a toolkit for resting-state functional magnetic resonance imaging data processing[J]. PLoS One, 2011,6(9).
|
[35] |
PASZKE A , GROSS S , MASSA F ,et al. PyTorch:an imperative style,high-performance deep learning library[J]. Advances in Neural Information Processing Systems, 2019,32.
|
[36] |
PRECHELT L . Automatic early stopping using cross validation:quantifying the criteria[J]. Neural Networks, 1998,11(4): 761-767.
|
[37] |
DE BOER P T , KROESE D P , MANNOR S ,et al. A tutorial on the cross-entropy method[J]. Annals of Operations Research, 2005,134(1): 19-67.
|
[38] |
张钹 . 人工智能进入后深度学习时代[J]. 智能科学与技术学报, 2019,1(1): 4-6.
|
|
ZHANG B . Artificial intelligence is entering the post deep-learning era[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(1): 4-6.
|
[1] |
STEVENS G A , HOGAN D R , BOERMA T . Improving reporting of health estimates[J]. Bulletin of the World Health Organization, 2016,94(7): 483.
|
[2] |
SARRAF S , DESOUZA D , ANDERSON J A E ,et al. DeepAD:Alzheimer’s disease classification via deep convolutional neural networks using MRI and fMRI[J]. BioRxiv, 2017.
|
[4] |
郑南宁 . 人工智能新时代[J]. 智能科学与技术学报, 2019,1(1): 1-3.
|
|
ZHENG N N . The new era of artificial intelligence[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(1): 1-3.
|
[5] |
TAQI A M , AWAD A , AL-AZZO F ,et al. The impact of multi-optimizers and data augmentation on TensorFlow convolutional neural network performance[C]// Proceedings of 2018 IEEE Conference on Multimedia Information Processing and Retrieval. Piscataway:IEEE Press, 2018: 140-145.
|
[6] |
QIAO J P , LYU Y R , CAO C F ,et al. Multivariate deep learning classification of Alzheimer’s disease based on hierarchical partner matching independent component analysis[J]. Frontiers in Aging Neuroscience, 2018,10:417.
|
[7] |
LIN W M , TONG T , GAO Q Q ,et al. Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment[J]. Frontiers in Neuroscience, 2018,12:777.
|
[8] |
AWATE G . Detection of Alzheimers disease from MRI using convolutional neural networks,exploring transfer learning and BellCNN[J]. arXiv preprint, 2019,arXiv:1901.10231.
|
[9] |
MURUGAN S , VENKATESAN C , SUMITHRA M G ,et al. DEMNET:a deep learning model for early diagnosis of Alzheimer diseases and dementia from MR images[J]. IEEE Access, 2021,9: 90319-90329.
|
[10] |
REN F J , YANG C H , QIU Q ,et al. Exploiting discriminative regions of brain slices based on 2D CNNs for Alzheimer’s disease classification[J]. IEEE Access, 2019,7: 181423-181433.
|
[11] |
ZHANG Y T , TENG Q Z , LIU Y Y ,et al. Diagnosis of Alzheimer’s disease based on regional attention with sMRI gray matter slices[J]. Journal of Neuroscience Methods, 2022,365.
|
[12] |
SARRAF S , TOFIGHI G . Deep learning-based pipeline to recognize Alzheimer’s disease using fMRI data[C]// Proceedings of 2016 Future Technologies Conference. Piscataway:IEEE Press, 2017: 816-820.
|
[13] |
FAROOQ A , ANWAR S , AWAIS M ,et al. A deep CNN based multi-class classification of Alzheimer’s disease using MRI[C]// Proceedings of 2017 IEEE International Conference on Imaging Systems and Techniques. Piscataway:IEEE Press, 2018: 1-6.
|
[14] |
KAZEMI Y , HOUGHTEN S . A deep learning pipeline to classify different stages of Alzheimer’s disease from fMRI data[C]// Proceedings of 2018 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology. Piscataway:IEEE Press, 2018: 1-8.
|
[15] |
JANGHEL R R , RATHORE Y K . Deep convolution neural network based system for early diagnosis of Alzheimer’s disease[J]. IRBM, 2021,42(4): 258-267.
|
[16] |
WU C L , GUO S W , HONG Y J ,et al. Discrimination and conversion prediction of mild cognitive impairment using convolutional neural networks[J]. Quantitative Imaging in Medicine and Surgery, 2018,8(10): 992-1003.
|
[17] |
JAIN R , JAIN N , AGGARWAL A ,et al. Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images[J]. Cognitive Systems Research, 2019,57(C): 147-159.
|
[18] |
BILLONES C D , DEMETRIA O J L D , HOSTALLERO D E D ,et al. DemNet:a convolutional neural network for the detection of Alzheimer’s disease and mild cognitive impairment[C]// Proceedings of 2016 IEEE Region 10 Conference. Piscataway:IEEE Press, 2017: 3724-3727.
|
[19] |
VALLIANI A , SONI A . Deep residual nets for improved Alzheimer’s diagnosis[C]// Proceedings of the 8th ACM International Conference on Bioinformatics,Computational Biology,and Health Informatics. New York:ACM Press, 2017:615.
|
[20] |
ISLAM J , ZHANG Y Q . A novel deep learning based multi-class classification method for Alzheimer’s disease detection using brain MRI data[C]// Proceedings of International Conference on Brain Informatics. Cham:Springer, 2017: 213-222.
|
[21] |
ISLAM J , ZHANG Y Q . Deep convolutional neural networks for automated diagnosis of Alzheimer’s disease and mild cognitive Impairment using 3D brain MRI[C]// Proceedings of International Conference on Brain Informatics. Cham:Springer, 2018: 359-369.
|
[22] |
HON M , KHAN N M . Towards Alzheimer’s disease classification through transfer learning[C]// Proceedings of 2017 IEEE International Conference on Bioinformatics and Biomedicine. Piscataway:IEEE Press, 2017: 1166-1169.
|
[23] |
FAROOQ A , ANWAR S , AWAIS M ,et al. Artificial intelligence based smart diagnosis of Alzheimer’s disease and mild cognitive impairment[C]// Proceedings of 2017 International Smart Cities Conference. Piscataway:IEEE Press, 2017: 1-4.
|