智能科学与技术学报 ›› 2021, Vol. 3 ›› Issue (4): 412-434.doi: 10.11959/j.issn.2096-6652.202141
胡东伟1, 冯晓璐2
修回日期:
2020-08-14
出版日期:
2021-12-15
发布日期:
2021-12-01
作者简介:
胡东伟(1980- ),男,博士,中国电子科技集团公司第五十四研究所高级工程师,主要研究方向为无线通信理论、大规模集成电路设计和计算神经科学Dongwei HU1, Xiaolu FENG2
Revised:
2020-08-14
Online:
2021-12-15
Published:
2021-12-01
摘要:
理解大脑的工作原理是实现“终极”人工智能的重要途径。建模并验证模型的正确性是理解大脑工作原理的重要手段。首先概述大脑的实验研究方法和建模研究方法;然后给出大脑的框图模型,并以强化学习为核心介绍大脑建模的理论框架;最后给出目前亟待解决的几个热点问题,并讨论大脑建模与相关学科之间的关系。
中图分类号:
胡东伟,冯晓璐. 大脑建模的理论框架及热点问题[J]. 智能科学与技术学报, 2021, 3(4): 412-434.
Dongwei HU,Xiaolu FENG. Theoretical framework of brain modelling and highlighted problems[J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(4): 412-434.
[1] | HINTON G E , SALAKHUTDINOV R R . Reducing the dimensionality of data with neural networks[J]. Science, 2006,313(5786): 504-507. |
[2] | 钟义信 . 机制主义人工智能理论:一种通用的人工智能理论[J]. 智能系统学报, 2018,13(1): 2-18. |
ZHONG Y X . Mechanism-based artificial intelligence theory:a universal theory of artifical intelligence[J]. CAAI Transactions on Intelligent Systems, 2018,13(1): 2-18. | |
[3] | 何华灿 . 泛逻辑学理论:机制主义人工智能理论的逻辑基础[J]. 智能系统学报, 2018,13(1): 19-36. |
HE H C . Universal logic theory:logical foundation of mechanism-based artificial intelligence theory[J]. CAAI Transactions on Intelligent Systems, 2018,13(1): 19-36. | |
[4] | 汪培庄 . 因素空间理论:机制主义人工智能理论的数学基础[J]. 智能系统学报, 2018,13(1): 37-54. |
WANG P Z . Factor space-mathematical basis of mechanism based artificial intelligence theory[J]. CAAI Transactions on Intelligent Systems, 2018,13(1): 37-54. | |
[5] | 汪培庄, 周红军, 何华灿 ,等. 因素表示的信息空间与广义概率逻辑[J]. 智能系统学报, 2019,14(5): 843-852. |
WANG P Z , ZHOU H J , HE H C ,et al. Factorial information space and generalized probability logic[J]. CAAI Transactions on Intelligent Systems, 2019,14(5): 843-852. | |
[6] | 刘经纬, 赵辉, 周瑞 ,等. 规则推理与神经计算智能控制系统改进及比较[J]. 智能系统学报, 2017,12(6): 823-832. |
LIU J W , ZHAO H , ZHOU R ,et al. Improvement and comparison research between intelligent control systems based on rule based reasoning and neural computation AI methods[J]. CAAI Transactions on Intelligent Systems, 2017,12(6): 823-832. | |
[7] | 李德毅 . AI:人类社会发展的加速器[J]. 智能系统学报, 2017,12(5): 583-589. |
LI D Y . Artificial intelligence:an accelerator for the development of human society[J]. CAAI Transactions on Intelligent Systems, 2017,12(5): 583-589. | |
[8] | 曾毅, 刘成林, 谭铁牛 . 类脑智能研究的回顾与展望[J]. 计算机学报, 2016,39(1): 212-222. |
ZENG Y , LIU C L , TAN T N . Retrospect and outlook of brain-inspired intelligence research[J]. Chinese Journal of Computers, 2016,39(1): 212-222. | |
[9] | FASANO A , DANIELE A , ALBANESE A . Treatment of motor and non-motor features of Parkinson’s disease with deep brain stimulation[J]. The Lancet Neurology, 2012,11(5): 429-442. |
[10] | KUO C C J . Understanding convolutional neural networks with a mathematical model[J]. Journal of Visual Communication and Image Representation, 2016,41: 406-413. |
[11] | 寿天德 . 神经生物学[M]. 3版.北京: 高等教育出版社, 2013. |
SHOU T D . Neurobiology[M]. 3rd edition. Beijing: Higher Education Press, 2013. | |
[12] | KANDEL E , SCHWARTZ J , JESSELL T ,et al. Principles of neural science[M]. 5th edition.[S.l.:s.n.], 2013. |
[13] | DAYAN P , ABBOTT L F . Theoretical neuroscience[M]. Cambridge: The MIT Press, 2001. |
[14] | ECKARDT M . The hippocampus as a cognitive map[J]. The Journal of Nervous and Mental Disease, 1980,168(3): 191-192. |
[15] | LI Z P . Understanding vision:theory,models,and data[M]. Oxford: Oxford University Press, 2014. |
[16] | GEORGIEVA P , SILVA F , MILANOVA M ,et al. EEG signal processing for brain–computer interfaces[M]// Springer handbook of bio-/neuroinformatics. Heidelberg: Springer, 2014. |
[17] | LIU Z Q . Causation,Bayesian networks,and cognitive MapsFull-text in English[J]. Acta Automatica Sinica, 2001,27(4): 552-566. |
[18] | BARBER D . Machine learning[M]// Bayesian reasoning and machine learning. Cambridge: Cambridge University Press, 2012: 303-304. |
[19] | AXELROD R . Structure of decision:the cognitive maps of political elites[M]. Princeton: Princeton University Press, 2016. |
[20] | FREDRIC M H , IVICA K . 神经计算原理[M]. 叶世伟,王海娟,译.北京: 机械工业出版社, 2007. |
FREDRIC M H , IVIC K . Principles of neurocomputing for science &engingeering[M]. Translated by YE S W,WANG H J. Beijing: China Machine Press, 2007. | |
[21] | DE KAMPS M , VAN DER VELDE F . From artificial neural networks to spiking neuron populations and back again[J]. Neural Networks, 2001,14(6/7): 941-953. |
[22] | FURBER S . I origins[M]// SpiNNaker:a spiking neural network architecture. Boston-Delft: Now Publishers, 2020. |
[23] | GERSTNER W , KISTLER W M , NAUD R ,et al. Neuronal dynamics[M]. Cambridge: Cambridge University Press, 2009. |
[24] | BRETTE R . Computing with neural synchrony[J]. PLoS Computational Biology, 2012,8(6): e1002561. |
[25] | VERSCHURE P F M J , PENNARTZ C M A , PEZZULO G . The why,what,where,when and how of goal-directed choice:neuronal and computational principles[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2014,369(1655): 20130483. |
[26] | VERSCHURE PAUL F M J . Distributed adaptive control:a theory of the mind,brain,body nexus[J]. Biologically Inspired Cognitive Architectures, 2012: 55-72. |
[27] | BOLDT A , BLUNDELL C , DE MARTINO B . Confidence modulates exploration and exploitation in value-based learning[J]. Neuroscience of Consciousness, 2019,2019(1): niz004. |
[28] | VEENMAN M V J , VAN HOUT-WOLTERS B H A M , AFFLERBACH P . Metacognition and learning:conceptual and methodological considerations[J]. Metacognition and Learning, 2006,1(1): 3-14. |
[29] | COX M T . Metacognition in computation:a selected research review[J]. Artificial Intelligence, 2005,169(2): 104-141. |
[30] | MAASS W . On the computational power of winner-take-all[J]. Neural Computation, 2000,12(11): 2519-2535. |
[31] | FARZANEH Y , AKBARZADEH A , AKBARI A A . New automated learning CPG for rhythmic patterns[J]. Intelligent Service Robotics, 2012,5(3): 169-177. |
[32] | GUERTIN P A . Central pattern generator for locomotion:anatomical,physiological,and pathophysiological considerations[J]. Frontiers in Neurology, 2012,3: 183. |
[33] | KATZ P S . Evolution of central pattern generators and rhythmic behaviours[J]. Philosophical Transactions of the Royal Society of London Series B,Biological Sciences, 2016,371(1685): 20150057. |
[34] | KARL F . The free-energy principle:a rough guide to the brain?[J]. Trends in Cognitive Sciences, 2009,13(7): 293-301. |
[35] | BOGACZ R . A tutorial on the free-energy framework for modelling perception and learning[J]. Journal of Mathematical Psychology, 2017,76: 198-211. |
[36] | KINGMA D P , WELLING M . An introduction to variational autoencoders[J]. Foundations and Trends? in Machine Learning, 2019,12(4): 307-392. |
[37] | HINTON G . Boltzmann machine[J]. Scholarpedia, 2007,2(5): 1668. |
[38] | SALAKHUTDINOV R , HINTON G E . Deep Boltzmann machines[J]. Journal of Machine Learning Research, 2009,5(2): 448-455. |
[39] | BACHMAN P , SORDONI A , TRISCHLER A . Learning algorithms for active learning[C]// Proceedings of the 34th International Conference on Machine Learning.[S.l.:s.n.], 2017. |
[40] | DOUGLAS R J , MARTIN K A C . Recurrent neuronal circuits in the neocortex[J]. Current Biology:CB, 2007,17(13): 496-500. |
[41] | WANG X J . Decision making in recurrent neuronal circuits[J]. Neuron, 2008,60(2): 215-234. |
[42] | MORSE A F , DE GREEFF J , BELPEAME T ,et al. Epigenetic robotics architecture (ERA)[J]. IEEE Transactions on Autonomous Mental Development, 2010,2(4): 325-339. |
[43] | DAYAN P , DAW N D . Decision theory,reinforcement learning,and the brain[J]. Cognitive,Affective & Behavioral Neuroscience, 2008,8(4): 429-453. |
[44] | DABNEY W , KURTH-NELSON Z , UCHIDA N ,et al. A distributional code for value in dopamine-based reinforcement learning[J]. Nature, 2020,577(7792): 671-675. |
[45] | MILLER K J , SHENHAV A , LUDVIG E A . Habits without values[J]. Psychological Review, 2019,126(2): 292-311. |
[46] | DOLAN R J , DAYAN P . Goals and habits in the brain[J]. Neuron, 2013,80(2): 312-325. |
[47] | FRIEDEL E , KOCH S P , WENDT J ,et al. Devaluation and sequential decisions:linking goal-directed and model-based behavior[J]. Fron tiers in Human Neuroscience, 2014,8: 587. |
[48] | PEZZULO G , VERSCHURE P F M J , BALKENIUS C ,et al. The principles of goal-directed decision-making:from neural mechanisms to computation and robotics[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2014,369(1655): 20130470. |
[49] | DAW N D , DAYAN P . The algorithmic anatomy of model-based evaluation[J]. Philosophical Transactions of the Royal Society of London Series B,Biological Sciences, 2014,369(1655): 20130478. |
[50] | BUSCHMAN T J , MILLER E K . Goal-direction and top-down control[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2014,369(1655): 20130471. |
[51] | BOTVINICK M , WEINSTEIN A . Model-based hierarchical reinforcement learning and human action control[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2014,369(1655): 20130480. |
[52] | BOUREAU Y L , SOKOL-HESSNER P , DAW N D . Deciding how to decide:self-control and meta-decision making[J]. Trends in Cognitive Sciences, 2015,19(11): 700-710. |
[53] | GLIMCHER P W , FEHR E . Neuroeconomics:decision making and the brain[M]. 2nd edition.[S.l:s.n.], 2014. |
[54] | HA D , SCHMIDHUBER J . World models[J]. arXiv preprint,2018,arXiv:1803.10122. |
[55] | FU M C , . Monte Carlo tree search:a tutorial[C]// Proceedings of 2018 Winter Simulation Conference (WSC). Piscataway:IEEE Press, 2018: 222-236. |
[56] | SILVER D , HUANG A , MADDISON C J ,et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016,529(7587): 484-489. |
[57] | SILVER D , SCHRITTWIESER J , SIMONYAN K ,et al. Mastering the game of go without human knowledge[J]. Nature, 2017,550(7676): 354-359. |
[58] | MORAN R , KERAMATI M , DAYAN P ,et al. Retrospective model-based inference guides model-free credit assignment[J]. Nature Communications, 2019,10: 750. |
[59] | GERSHMAN S J , MARKMAN A B , OTTO A R . Retrospective revaluation in sequential decision making:a tale of two systems[J]. Journal of Experimental Psychology General, 2014,143(1): 182-194. |
[60] | KR?MER W . Kahneman,D(2011):thinking,fast and slow[J]. Statistical Papers, 2014,55(3): 915. |
[61] | BANSAL S , CALANDRA R , CHUA K ,et al. MBMF:model-based priors for model-free reinforcement learning[J]. arXiv preprint,2017,arXiv:1709.03153. |
[62] | DEISENROTH M P , RASMUSSEN C E . PILCO:a model-based and data-efficient approach to policy search[C]// Proceedings of the 28th International Conference on Machine Learning.[S.l.:s.n.], 2011: 465-472. |
[63] | SMITTENAAR P , FITZGERALD T H B , ROMEI V ,et al. Disruption of dorsolateral prefrontal cortex decreases model-based in favor of model-free control in humans[J]. Neuron, 2013,80(4): 914-919. |
[64] | KERAMATI M , DEZFOULI A , PIRAY P . Speed/accuracy trade-off between the habitual and the goal-directed processes[J]. PLoS Computational Biology, 2011,7(5): e1002055. |
[65] | KOECHLIN E , SUMMERFIELD C . An information theoretical approach to prefrontal executive function[J]. Trends in Cognitive Sciences, 2007,11(6): 229-235. |
[66] | TYE K M , JANAK P H . Amygdala neurons differentially encode motivation and reinforcement[J]. The Journal of Neuroscience:the Official Journal of the Society for Neuroscience, 2007,27(15): 3937-3945. |
[67] | SCH?NFELD L M , ZECH M P , SCH?BLE S , ,et al. Lesions of the rat basolateral amygdala reduce the behavioral response to ultrasonic vocalizations[J]. Behavioural Brain Research, 2020,378: 112274. |
[68] | PANKSEPP J . Affective neuroscience:the foundations of human and animal emotions[M]. Oxford: Oxford University Press, 2005. |
[69] | SMITH R , ALKOZEI A , KILLGORE W D S . How do emotions work?[J]. Frontiers for Young Minds, 2017,5: 69. |
[70] | 于冬梅 . 情感计算关键技术研究[D]. 上海:东华大学, 2009. |
YU D M . Research on key technology of affective computing[D]. Shanghai:Donghua University, 2009. | |
[71] | VALIKHANI M , SOURKOUNIS C . A brain emotional learning-based intelligent controller (BELBIC) for DFIG system[C]// Proceedings of 2014 International Symposium on Power Electronics,Electrical Drives,Automation and Motion. Piscataway:IEEE Press, 2014: 713-718. |
[72] | MCDUFF D , KAPOOR A . Visceral machines:risk-aversion in reinforcement learning with intrinsic physiological rewards[C]// Proceedings of 2019 Conference Blind Submission.[S.l.:s.n.], 2019. |
[73] | NAVAJAS J , HINDOCHA C , FODA H ,et al. The idiosyncratic nature of confidence[J]. Nature Human Behaviour, 2017,1(11): 810-818. |
[74] | BISHOP S J , GAGNE C . Anxiety,depression,and decision making:a computational perspective[J]. Annual Review of Neuroscience, 2018,41: 371-388. |
[75] | LERNER J S , LI Y , VALDESOLO P ,et al. Emotion and decision making[J]. Annual Review of Psychology, 2015,66(1): 799-823. |
[76] | OTTER D W , MEDINA J R , KALITA J K . A survey of the usages of deep learning for natural language processing[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021,32(2): 604-624. |
[77] | 朱张莉, 饶元, 吴渊 ,等. 注意力机制在深度学习中的研究进展[J]. 中文信息学报, 2019,33(6): 1-11. |
ZHU Z L , RAO Y , WU Y ,et al. Research progress of attention mechanism in deep learning[J]. Journal of Chinese Information Processing, 2019,33(6): 1-11. | |
[78] | ANTUNES A , LAFLAQUIERE A , OGATA T ,et al. A Bi-directional multiple timescales LSTM model for grounding of actions and verbs[C]// Proceedings of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway:IEEE Press, 2019: 2614-2621. |
[79] | ?TEPáNOVá K , KLEIN F B , CANGELOSI A ,et al. Mapping language to vision in a real-world robotic scenario[J]. IEEE Transactions on Cognitive and Developmental Systems, 2018,10(3): 784-794. |
[80] | FELDMAN H , FRISTON K J . Attention,uncertainty,and free-energy[J]. Frontiers in Human Neuroscience, 2010,4: 215. |
[81] | STACHENFELD K L , BOTVINICK M M , GERSHMAN S J . The hippocampus as a predictive map[J]. Nature Neuroscience, 2017,20(11): 1643-1653. |
[82] | LAND M F . Do we have an internal model of the outside world?[J]. Philosophical Transactions of the Royal Society of London Series B,Biological Sciences, 2014,369(1636): 20130045. |
[83] | WINTER S S , TAUBE J S . Head direction cells:from generation to integration[M]// Space,time and memory in the hippocampal formation. Vienna: Springer Vienna, 2014: 83-106. |
[84] | ROWLAND D C , ROUDI Y , MOSER M B ,et al. Ten years of grid cells[J]. Annual Review of Neuroscience, 2016,39: 19-40. |
[85] | BARRY C , LEVER C , HAYMAN R ,et al. The boundary vector cell model of place cell firing and spatial memory[J]. Reviews in the Neurosciences, 2006,17(1/2): 71-97. |
[86] | KROPFF E , CARMICHAEL J E , MOSER M B ,et al. Speed cells in the medial entorhinal cortex[J]. Nature, 2015,523(7561): 419-424. |
[87] | CULLEN K E , TAUBE J S . Our sense of direction:progress,controversies and challenges[J]. Nature Neuroscience, 2017,20(11): 1465-1473. |
[88] | PARK E H , KEELEY S , SAVIN C ,et al. How the internally organized direction sense is used to navigate[J]. Neuron, 2019,101(2): 285-293. |
[89] | BEHRENS T E J , MULLER T H , WHITTINGTON J C R ,et al. What is a cognitive map? Organizing knowledge for flexible behavior[J]. Neuron, 2018,100(2): 490-509. |
[90] | KOBER J , BAGNELL J A , PETERS J . Reinforcement learning in robotics:a survey[J]. The International Journal of Robotics Research, 2013,32(11): 1238-1274. |
[91] | DU Z X , ZHOU C , DING M ,et al. Cognitive knowledge graph reasoning for one-shot relational learning[J]. arXiv preprint,2019,arXiv:1906.05489. |
[92] | RITTER S , WANG J X , KURTH-NELSON Z ,et al. Been there,done that:meta-learning with episodic recall[C]// Proceedings of the 35th International Conference on Machine Learning.[S.l.:s.n.], 2018. |
[93] | DURRANT-WHYTE H , BAILEY T . Simultaneous localization and mapping:part I[J]. IEEE Robotics & Automation Magazine, 2006,13(2): 99-110. |
[94] | BAILEY T , DURRANT-WHYTE H , . Simultaneous localization and mapping (SLAM):part II[J]. IEEE Robotics & Automation Magazine, 2006,13(3): 108-117. |
[95] | BOWLING M , BURCH N , JOHANSON M ,et al. Heads-up limit hold’em poker is solved[J]. Science, 2015,347(6218): 145-149. |
[96] | FAULKNER R , PRECUP D . Dyna planning using a feature based generative model[J]. arXiv preprint,2018,arXiv:1805.10129. |
[97] | SOLWAY A , BOTVINICK M M . Goal-directed decision making as probabilistic inference:a computational framework and potential neural correlates[J]. Psychological Review, 2012,119(1): 120-154. |
[98] | BOTVINICK M M , NIV Y , BARTO A G . Hierarchically organized behavior and its neural foundations:a reinforcement learning perspective[J]. Cognition, 2009,113(3): 262-280. |
[99] | PONG V , GU S X , DALAL M ,et al. Temporal difference models:model-free deep RL for model-based control[J]. arXiv preprint,2018:arXiv:1802.09081. |
[100] | MAISTO D , DONNARUMMA F , PEZZULO G . Divide et impera:subgoaling reduces the complexity of probabilistic inference and problem solving[J]. Journal of the Royal Society Interface, 2015,12(104): 20141335. |
[101] | BERKMAN E T . The neuroscience of goals and behavior change[J]. Consulting Psychology Journal:Practice and Research, 2018,70(1): 28-44. |
[102] | KOOL W , BOTVINICK M . Mental labour[J]. Nature Human Behaviour, 2018,2(12): 899-908. |
[103] | FLEMING S M , DAW N D . Self-evaluation of decision-making:a general Bayesian framework for metacognitive computation[J]. Psychological Review, 2017,124(1): 91-114. |
[104] | NAVAJAS J , BAHRAMI B , LATHAM P E . Post-decisional accounts of biases in confidence[J]. Current Opinion in Behavioral Sciences, 2016,11: 55-60. |
[105] | ATIYA N A A , RA?ó I , PRASAD G ,et al. A neural circuit model of decision uncertainty and change-of-mind[J]. Nature Communications, 2019,10: 2287. |
[106] | MURPHY R R . Introduction to AI robotics[J]. Industrial Robot:an International Journal, 2001,28(3): 266-267. |
[107] | DE SILVA L , EKANAYAKE H . Behavior-based robotics and the reactive paradigm a survey[C]// Proceedings of 2008 11th International Conference on Computer and Information Technology. Piscataway:IEEE Press, 2008: 36-43. |
[108] | HASSABIS D , KUMARAN D , SUMMERFIELD C ,et al. Neuroscience-inspired artificial intelligence[J]. Neuron, 2017,95(2): 245-258. |
[109] | KRALIK J D , MAO T , CHENG Z ,et al. Modeling incubation and restructuring for creative problem solving in robots[J]. Robotics and Autonomous Systems, 2016,86: 162-173. |
[110] | WINFIELD A F T . Experiments in artificial theory of mind:from safety to story-telling[J]. Frontiers in Robotics and AI, 2018,5: 75. |
[111] | GROSS R . Psychology:the science of mind and behavior (6E)[M]. UK: Hodder Education, 2010. |
[112] | SHAMS L , BEIERHOLM U R . Causal inference in perception[J]. Trends in Cognitive Sciences, 2010,14(9): 425-432. |
[113] | MICHEL M , BECK D , BLOCK N ,et al. Opportunities and challenges for a maturing science of consciousness[J]. Nature Human Behaviour, 2019,3(2): 104-107. |
[114] | DAYAN P , DURSTEWITZ D . Editorial overview:computational modeling:after the middle ages of computational neuroscience[J]. Current Opinion in Behavioral Sciences, 2016,11(9): v-vi. |
[1] | 王飞跃, 缪青海, 张军平, 郑文博, 丁文文. 探讨AI for Science的影响与意义:现状与展望[J]. 智能科学与技术学报, 2023, 5(1): 1-6. |
[2] | 许辉. 基于深度Q学习的蜂窝车联网边路资源分配算法[J]. 智能科学与技术学报, 2023, 5(1): 83-91. |
[3] | 张军欢, 朱正一, 蔡可玮. 人工智能与量化交易的课程建设[J]. 智能科学与技术学报, 2023, 5(1): 104-112. |
[4] | 田永林, 陈苑文, 杨静, 王雨桐, 王晓, 缪青海, 王子然, 王飞跃. 元宇宙与平行系统:发展现状、对比及展望[J]. 智能科学与技术学报, 2023, 5(1): 121-132. |
[5] | 卢经纬, 程相, 王飞跃. 求解微分方程的人工智能与深度学习方法:现状及展望[J]. 智能科学与技术学报, 2022, 4(4): 461-476. |
[6] | 蔡莹皓, 杨华, 安璇, 王文硕, 杜沂东, 张嘉韬, 王志刚. 神经符号学及其应用研究[J]. 智能科学与技术学报, 2022, 4(4): 560-570. |
[7] | 武强, 季雪庭, 吕琳媛. 元宇宙中的人工智能技术与应用[J]. 智能科学与技术学报, 2022, 4(3): 324-334. |
[8] | 赖文柱, 陈德旺, 何振峰, 邓新国, GIUSEPPE CARLO Marano. 地铁列车驾驶技术发展综述:从人工驾驶到智能无人驾驶[J]. 智能科学与技术学报, 2022, 4(3): 335-343. |
[9] | 马帅, 傅启明, 陈建平, 冯帆, 陆悠, 李铮伟, 裘舒年. 基于双池DQN的HVAC无模型优化控制方法[J]. 智能科学与技术学报, 2022, 4(3): 426-444. |
[10] | 余跃, 刘欣, 蒋芳清, 张晗, 王晖, 曾炜. 支持鹏程系列开源大模型应用生态演化的可持续学习能力探索[J]. 智能科学与技术学报, 2022, 4(1): 97-108. |
[11] | 夏丽娜, 李擎, 宋睿卓, 王子涵, 许镇. 未知异构多智能体系统无模型自适应动态规划同步控制[J]. 智能科学与技术学报, 2021, 3(4): 444-448. |
[12] | 李伟, 任孟瀚, 黄威豪, 杜晓玉, 周毅. 基于改进M-ORB的视觉SLAM直接-闭环检测算法[J]. 智能科学与技术学报, 2021, 3(4): 482-491. |
[13] | 李亚玲, 杨林瑶, 葛俊, 覃缘琪, 王晓. 博弈5.0:基于平行系统和机器博弈的社会认知平行博弈[J]. 智能科学与技术学报, 2021, 3(4): 507-520. |
[14] | 王飞跃. 平行哲学与智能技术:平行产业与智慧社会的对偶方程与测试基础[J]. 智能科学与技术学报, 2021, 3(3): 245-255. |
[15] | 王禾扬, 杨启鸣, 朱旗. 基于深度卷积集成网络的视网膜多种疾病筛查和识别方法[J]. 智能科学与技术学报, 2021, 3(3): 259-267. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|