智能科学与技术学报 ›› 2023, Vol. 5 ›› Issue (2): 267-273.doi: 10.11959/j.issn.2096-6652.202322

• 专题:平行智能研究前沿 • 上一篇    下一篇

平行模糊控制:虚实互动、相互增强的自学习控制方法

陈德旺1,2, 欧纪祥1   

  1. 1 福建理工大学交通运输学院,福建 福州 350118
    2 福州大学计算机与大数据学院,福建 福州 350108
  • 修回日期:2023-05-04 出版日期:2023-06-15 发布日期:2023-06-10
  • 作者简介:陈德旺(1976- ),男,博士,福建理工大学交通运输学院教授,俄罗斯自然科学院外籍院士,福州大学计算机与大数据学院博士生导师,福建省“闽江学者”特聘教授,主要研究方向为人工智能算法、模糊系统和智能交通系统
    欧纪祥(2001- ),男,福建理工大学交通运输学院硕士研究生,主要研究方向为可解释人工智能
  • 基金资助:
    国家自然科学基金项目(61976055);福建省财政厅教育和科研专项资金项目(GY-Z21001);福建理工大学科研启动基金项目(GY-Z22071)

Parallel fuzzy control: a self-learning control method with virtual-real interaction and mutual enhancement

Dewang CHEN1,2, Jixiang OU1   

  1. 1 School of Transportation, Fujian University of Technology, Fuzhou 350118, China
    2 College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China
  • Revised:2023-05-04 Online:2023-06-15 Published:2023-06-10
  • Supported by:
    The National Natural Science Foundation of China(61976055);The Special Fund for Education and Scientific Research of Fujian Provincial Department of Finance(GY-Z21001);Scientific Research Foundation of Fujian University of Technology(GY-Z22071)

摘要:

模糊控制具有可解释性和容易实现等优点,但是自学习能力较弱,难以有效利用控制过程中积累的大数据。平行控制是一种新型智能控制方法,能有效利用互联网和大数据,实现虚实互动、相互增强的智能控制。新方法将模糊控制与平行控制相互结合,提出了平行模糊控制的定义和框架,并对其可能的应用进行了探讨。平行模糊控制有可能扩展模糊控制的发展方向,也可能成为平行控制的一个新思路,在保证可解释与可信自动控制的基础上,有效利用大数据和基于数据驱动的一些机器学习算法实现自学习的控制。

关键词: 平行模糊控制, 模糊控制, 平行控制, ACP方法, 自学习控制

Abstract:

Fuzzy control has advantages such as interpretability and ease of implementation.However, it is limited by its weak self-learning capability, which makes it difficult to effectively utilize the large amount of data accumulated in the control process.Parallel control is a new intelligent control method that enables intelligent control with virtual-real interaction and mutual enhancement, effectively using the Internet and big data to achieve intelligent control.Fuzzy control and parallel control were combined as a new method, and the definition and framework of parallel fuzzy control were proposed and its possible applications were discussed.Parallel fuzzy control has the potential to extend the development direction of fuzzy control and become a new thinking for parallel control.It can effectively utilize big data and some machine learning algorithms based on data-driven to achieve self-learning control, while ensuring interpretability and credibility.

Key words: parallel fuzzy control, fuzzy control, parallel control, ACP approach, self-learning control

中图分类号: 

No Suggested Reading articles found!