[1] |
刘全, 翟建伟, 章宗长 ,等. 深度强化学习综述[J]. 计算机学报, 2018,41(1): 1-27.
|
|
LIU Q , ZHAI J W , ZHANG Z Z ,et al. A survey on deep reinforcement learning[J]. Chinese Journal of Computers, 2018,41(1): 1-27.
|
[2] |
王飞跃, 曹东璞, 魏庆来 . 强化学习:迈向知行合一的智能机制与算法[J]. 智能科学与技术学报, 2020,2(2): 101-106.
|
|
WANG F Y , CAO D P , WEI Q L . Reinforcement learning:toward action-knowledge merged intelligent mechanisms and algorithms[J]. Chinese Journal of Intelligent Science and Technology, 2020,2(2): 101-106.
|
[3] |
刘朝阳, 穆朝絮, 孙长银 . 深度强化学习算法与应用研究现状综述[J]. 智能科学与技术学报, 2020,2(4): 314-326.
|
|
LIU Z Y , MU C X , SUN C Y . An overview on algorithms and applications of deep reinforcement learning[J]. Chinese Journal of Intelligent Science and Technology, 2020,2(4): 314-326.
|
[4] |
王金予, 魏欣然, 石文磊 ,等. 强化学习在资源优化领域的应用[J]. 大数据, 2021,7(5): 131-149.
|
|
WANG J Y , WEI X R , SHI W L ,et al. Applications of reinforcement learning in the field of resource optimization[J]. Big Data Research, 2021,7(5): 131-149.
|
[5] |
LOWE R , WU Y , TAMAR A ,et al. Multi-agent actor-critic for mixed cooperative-competitive environments[C]// Proceedings of the 31st Annual Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2017.
|
[6] |
CONITZER V , SANDHOLM T . AWESOME:a general multiagent learning algorithm that converges in self-play and learns a best response against stationary opponents[J]. Machine Learning, 2007,67(1/2): 23-43.
|
[7] |
EVERETT R , ROBERTS S . Learning against non-stationary agentswith opponent modelling and deep reinforcement learning[C]// Proceedings of AAAI Spring Symposium Series.[S.l.:s.n.], 2018.
|
[8] |
FOERSTER J N , ASSAEL Y M , DE FREITAS N ,et al. Learning to communicate with deep multi-agent reinforcement learning[C]// Proceedings of Advances in Neural Information Processing Systems. New York:ACM Press, 2016: 2137-2145.
|
[9] |
SUKHBAATAR S , SZLAM A , FERGUS R . Learning multiagentcommunication with back propagation[C]// Proceedings of Advances in Neural Information Processing Systems. New York:ACM Press, 2016: 2244-2252.
|
[10] |
KIM D , MOON S , HOSTALLERO D ,et al. Learning to schedule communication in multi-agent reinforcement learning[C]// Proceedings of the 7th International Conference on Learning Representations.[S.l.:s.n.], 2019.
|
[11] |
SUNEHAG P , LEVER G , GRUSLYS A ,et al. Value-decomposition networks for cooperative multi-agent learning[J]. arXiv preprint, 2017,arXiv:1706.05296.
|
[12] |
RASHID T , SAMVELYAN M , WITT C S D ,et al. QMIX:monotonic value function factorisation for deep multi-agent reinforcement learning[C]// Proceedings of the 35th International Conference on Machine Learning. New York:JMLR, 2018: 4292-4301.
|
[13] |
GUPTA J K , EGOROV M , KOCHENDERFER M J . Cooperative multi-agent control using deep reinforcement learning[C]// Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems. New York:ACM Press, 2017: 66-83.
|
[14] |
BAI H Y , CAI S J , YE N ,et al. Intention-aware online POMDP planning for autonomous driving in a crowd[C]// Proceedings of 2015 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2015: 454-460.
|
[15] |
SADIGH D , SASTRY S S , SESHIA S A ,et al. Information gathering actions over human internal state[C]// Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway:IEEE Press, 2016: 66-73.
|
[16] |
XIE A N , LOSEY D P , TOLSMA R ,et al. Learning latent representations to influence multi-agent interaction[C]// Proceedings of the 4th Conference on Robot Learning. New York:JMLR, 2020: 575-588.
|
[17] |
LITTMAN M L . Markov games as a framework for multi-agent reinforcement learning[M]// Machine learning proceedings 1994. Amsterdam: Elsevier, 1994: 157-163.
|
[18] |
TERRY J K , GRAMMEL N , HARI A ,et al. Revisiting parameter sharing in multi-agent deep reinforcement learning[J]. arXiv preprint, 2020,arXiv:2005.13625.
|
[19] |
CHRISTIANOS F , PAPOUDAKIS G , RAHMAN A ,et al. Scaling multi-agent reinforcement learning with selective parameter sharing[C]// Proceedings of the 38th International Conference on Machine Learning. New York:JMLR, 2021: 1989-1998.
|
[20] |
QI S Y , ZHU S C . Intent-aware multi-agent reinforcement learning[C]// Proceedings of 2018 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2018: 7533-7540.
|
[21] |
KIM W J , PARK J G , SUNG T C . Communication in multi-agent reinforcement learning:intention sharing[C]// Proceedings of the 9th International Conference on Learning Representations.[S.l.:s.n.], 2021.
|
[22] |
SAMVELYAN M , RASHID T , WITT C S ,et al. The StarCraft multi-agent challenge[C]// Proceedings of the 18th International Conference on Autonomous Agents and Multi-Agent Systems. New York:ACM Press, 2019: 2186-2188.
|