[1] |
ZHOU Z , CHEN X , LI E ,et al. Edge intelligence:paving the last mile of artificial intelligence with edge computing[J]. Proceedings of the IEEE, 2019,107(8): 1738-1762.
|
[2] |
LU Y L , HUANG X H , DAI Y Y ,et al. Federated learning for data privacy preservation in vehicular cyber-physical systems[J]. IEEE Network, 2020,34(3): 50-56.
|
[3] |
陈兵, 成翔, 张佳乐 ,等. 联邦学习安全与隐私保护综述[J]. 南京航空航天大学学报, 2020,52(5): 675-684.
|
|
CHEN B , CHENG X , ZHANG J L ,et al. Survey of security and privacy in federated learning[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020,52(5): 675-684.
|
[4] |
WANG H , KAPLAN Z , NIU D ,et al. Optimizing federated learning on non-IID data with reinforcement learning[C]// IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. Piscataway:IEEE Press, 2020: 1698-1707.
|
[5] |
ABDULRAHMAN S , TOUT H , OULD-SLIMANE H ,et al. A survey on federated learning:the journey from centralized to distributed on-site learning and beyond[J]. IEEE Internet of Things Journal, 2021,8(7): 5476-5497.
|
[6] |
SHI W Q , ZHOU S , NIU Z S . Device scheduling with fast convergence for wireless federated learning[C]// 2020 IEEE International Conference on Communications. Piscataway:IEEE Press, 2020: 1-6.
|
[7] |
REN J K , HE Y H , WEN D Z ,et al. Scheduling for cellular federated edge learning with importance and channel awareness[J]. IEEE Transactions on Wireless Communications, 2020,19(11): 7690-7703.
|
[8] |
CHEN M Z , POOR H V , SAAD W ,et al. Convergence time minimization of federated learning over wireless networks[C]// 2020 IEEE International Conference on Communications. Piscataway:IEEE Press, 2020: 1-6.
|
[9] |
WU W T , HE L G , LIN W W ,et al. Accelerating federated learning over reliability-agnostic clients in mobile edge computing systems[J]. IEEE Transactions on Parallel and Distributed Systems, 2021,32(7): 1539-1551.
|
[10] |
KANG J W , XIONG Z H , NIYATO D ,et al. Incentive mechanism for reliable federated learning:a joint optimization approach to combining reputation and contract theory[J]. IEEE Internet of Things Journal, 2019,6(6): 10700-10714.
|
[11] |
LU Y L , HUANG X H , ZHANG K ,et al. Blockchain empowered asynchronous federated learning for secure data sharing in Internet of vehicles[J]. IEEE Transactions on Vehicular Technology, 2020,69(4): 4298-4311.
|
[12] |
YOSHIDA N , NISHIO T , MORIKURA M ,et al. Hybrid-FL for wireless networks:cooperative learning mechanism using non-IID data[C]// 2020 IEEE International Conference on Communications. Piscataway:IEEE Press, 2020: 1-7.
|
[13] |
YANG Z H , CHEN M Z , SAAD W ,et al. Energy efficient federated learning over wireless communication networks[J]. IEEE Transactions on Wireless Communications, 2021,20(3): 1935-1949.
|
[14] |
ZENG T C , SEMIARI O , MOZAFFARI M ,et al. Federated learning in the sky:joint power allocation and scheduling with UAV swarms[C]// 2020 IEEE International Conference on Communications. Piscataway:IEEE Press, 2020: 1-6.
|
[15] |
TRAN H V , KADDOUM G , ELGALA H ,et al. Lightwave power transfer for federated learning-based wireless networks[J]. IEEE Communications Letters, 2020,24(7): 1472-1476.
|
[16] |
LUO S Q , CHEN X , WU Q ,et al. HFEL:joint edge association and resource allocation for cost-efficient hierarchical federated edge learning[J]. IEEE Transactions on Wireless Communications, 2020,19(10): 6535-6548.
|
[17] |
孟洛明, 孙康, 韦磊 ,等. 一种面向电力无线专网的虚拟资源优化分配机制[J]. 电子与信息学报, 2017,39(7): 1711-1718.
|
|
MENG L M , SUN K , WEI L ,et al. Optimal resource allocation mechanism for electric power wireless virtual networks[J]. Journal of Electronics & Information Technology, 2017,39(7): 1711-1718.
|
[18] |
李枝灵, 刘柱, 郭少勇 ,等. 基于免疫算法的电力线通信网接入点规划方法[J]. 北京邮电大学学报, 2016,39(S1): 104-108.
|
|
LI Z L , LIU Z , GUO S Y ,et al. Access points location planning based on immune algorithm for power line communication network[J]. Journal of Beijing University of Posts and Telecommunications, 2016,39(S1): 104-108.
|
[19] |
赵海涛, 张唐伟, 陈跃 ,等. 基于DQN的车载边缘网络任务分发卸载算法[J]. 通信学报, 2020,41(10): 172-178.
|
|
ZHAO H T , ZHANG T W , CHEN Y ,et al. Task distribution offloading algorithm of vehicle edge network based on DQN[J]. Journal on Communications, 2020,41(10): 172-178.
|
[20] |
喻鹏, 张俊也, 李文璟 ,等. 移动边缘网络中基于双深度 Q 学习的高能效资源分配方法[J]. 通信学报, 2020,41(12): 148-161.
|
|
YU P , ZHANG J Y , LI W J ,et al. Energy-efficient resource allocation method in mobile edge network based on double deep Q-learning[J]. Journal on Communications, 2020,41(12): 148-161.
|
[21] |
PAN S L , ZHANG Z Y , ZHANG Z W ,et al. Dependency-aware computation offloading in mobile edge computing:a reinforcement learning approach[J]. IEEE Access, 2019,7: 134742-134753.
|
[22] |
YANG Z Y , MERRICK K , JIN L W ,et al. Hierarchical deep reinforcement learning for continuous action control[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018,29(11): 5174-5184.
|
[23] |
LIANG X Y , DU X S , WANG G L ,et al. A deep reinforcement learning network for traffic light cycle control[J]. IEEE Transactions on Vehicular Technology, 2019,68(2): 1243-1253.
|
[24] |
LIU C F , BENNIS M , DEBBAH M ,et al. Dynamic task offloading and resource allocation for ultra-reliable low-latency edge computing[J]. IEEE Transactions on Communications, 2019,67(6): 4132-4150.
|
[25] |
SCHULMAN J , LEVINE S , MORITZ P ,et al. Trust region policy optimization[J]. arXiv Preprint,arXiv:1502.05477, 2015.
|