通信学报 ›› 2021, Vol. 42 ›› Issue (9): 96-105.doi: 10.11959/j.issn.1000-436x.2021134
杨晓元1,2, 毕新亮1,2, 刘佳1,2, 黄思远1
修回日期:
2021-06-15
出版日期:
2021-09-25
发布日期:
2021-09-01
作者简介:
杨晓元(1959− ),男,湖南湘潭人,博士,武警工程大学教授、博士生导师,主要研究方向为密码学、信息隐藏等基金资助:
Xiaoyuan YANG1,2, Xinliang BI1,2, Jia LIU1,2, Siyuan HUANG1
Revised:
2021-06-15
Online:
2021-09-25
Published:
2021-09-01
Supported by:
摘要:
针对基于深度学习的高容量图像隐写方案存在的载体图像和含密图像的残差图像会暴露秘密图像的问题,提出了结合图像加密和深度学习的高容量图像隐写算法。该算法设计使用了一种图像特征提取方法,使得从载体图像中提取的特征与从含密图像中提取的特征是一致的。发送方在图像隐写前,从载体图像中提取特征作为密钥,用来加密秘密图像。提取方提取加密过的秘密图像后,从含密图像中提取特征作为密钥,用来解密秘密图像。实验结果表明,攻击者无法从残差图像中发现秘密图像的信息,且密钥传递的频率更低,算法安全性得到了提升。
中图分类号:
杨晓元, 毕新亮, 刘佳, 黄思远. 结合图像加密与深度学习的高容量图像隐写算法[J]. 通信学报, 2021, 42(9): 96-105.
Xiaoyuan YANG, Xinliang BI, Jia LIU, Siyuan HUANG. High-capacity image steganography algorithm combining image encryption and deep learning[J]. Journal on Communications, 2021, 42(9): 96-105.
表1
隐藏网络结构"
层结构 | 输入尺寸 | 输出尺寸 |
4×4×64卷积+LeakyReLU | 256×256×6 | 128×128×64 |
4×4×128卷积+BN+LeakyReLU | 128×128×64 | 64×64×128 |
4×4×256卷积+BN+LeakyReLU | 64×64×128 | 32×32×256 |
4×4×512卷积+BN+LeakyReLU | 32×32×256 | 16×16×512 |
4×4×512卷积+BN+LeakyReLU | 16×16×512 | 8×8×512 |
4×4×512卷积+BN+LeakyReLU | 8×8×512 | 4×4×512 |
4×4×512卷积+ReLU | 4×4×512 | 2×2×512 |
4×4×512反卷积+BN+ReLU | 2×2×512 | 4×4×512 |
4×4×512反卷积+BN+ReLU | 4×4×1024 | 8×8×512 |
4×4×512反卷积+BN+ReLU | 8×8×1024 | 16×16×512 |
4×4×256反卷积+BN+ReLU | 16×16×1024 | 32×32×256 |
4×4×128反卷积+BN+ReLU | 32×32×512 | 64×64×128 |
4×4×64反卷积+BN+ReLU | 64×64×256 | 128×128×64 |
4×4×3反卷积+ Sigmoid | 128×128×128 | 256×256×3 |
[1] | PEVNY T , FILLER T , BAS P . Using high-dimensional image models to perform highly undetectable steganography[C]// Information Hiding. Berlin:Springer, 2010: 161-177. |
[2] | HOLUB V , FRIDRICH J . Designing steganographic distortion using directional filters[C]// Proceedings of 2012 IEEE International Workshop onInformation Forensics and Security (WIFS). Piscataway:IEEE Press, 2012: 234-239. |
[3] | HOLUB V , FRIDRICH J , DENEMARK T . Universal distortion function for steganography in an arbitrary domain[J]. EURASIP Journal on Information Security, 2014(1): 1-13. |
[4] | HICSONMEZ S , SAMET N , AKBAS E ,et al. GANILLA:generative adversarial networks for image to illustration translation[J]. Image and Vision Computing, 2020,95:103886. |
[5] | HE K , GKIOXARI G , DOLLáR P ,et al. Mask R-CNN[C]// Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2017: 2980-2988. |
[6] | SZEGEDY C , IOFFE S , VANHOUCKE V ,et al. Inception-v4,inception-ResNet and the impact of residual connections on learning[J]. arXiv Preprint,arXiv:1602.07261, 2016. |
[7] | CHOI Y , CHOI M , KIM M ,et al. StarGAN:unified generative adversarial networks for multi-domain image-to-image translation[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 8789-8797. |
[8] | GOODFELLOW I J , POUGET-ABADIE J ,, MIRZA M ,et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2014: 2672-2680. |
[9] | TANG W X , TAN S Q , LI B ,et al. Automatic steganographic distortion learning using a generative adversarial network[J]. IEEE Signal Processing Letters, 2017,24(10): 1547-1551. |
[10] | BALUJA S , . Hiding images in plain sight:deep steganography[C]// Advances in Neural Information Processing Systems 30 (NIPS 2017).[S.n.:s.l.], 2017: 2069-2079. |
[11] | DUAN X T , GUO D D , LIU N ,et al. A new high capacity image steganography method combined with image elliptic curve cryptography and deep neural network[J]. IEEE Access, 2020,8: 25777-25788. |
[12] | SHARMA K , AGGARWAL A , SINGHANIA T ,et al. Hiding data in images using cryptography and deep neural network[J]. Journal of Artificial Intelligence and Systems, 2019,1(1): 143-162. |
[13] | RAHIM R , NADEEM S . End-to-end trained CNN encoder-decoder networks for image steganography[C]// Proceedings of the European Conference on Computer Vision (ECCV).[S.n.:s.l.], 2018: 723-729. |
[14] | ZHANG R , DONG S Q , LIU J Y . Invisible steganography via generative adversarial networks[J]. Multimedia Tools and Applications, 2019,78(7): 8559-8575. |
[15] | SZEGEDY C , VANHOUCKE V , IOFFE S ,et al. Rethinking the inception architecture for computer vision[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2016: 2818-2826. |
[16] | DUAN X T , JIA K , LI B X ,et al. Reversible image steganography scheme based on a U-net structure[J]. IEEE Access, 2019,7: 9314-9323. |
[17] | RONNEBERGER O , FISCHER P , BROX T . U-net:convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin:Springer, 2015: 234-241. |
[18] | BADRINARAYANAN V , KENDALL A , CIPOLLA R . SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(12): 2481-2495. |
[19] | LIU Q , XIANG X Y , QIN J H ,et al. Coverless image steganography based on DenseNet feature mapping[J]. EURASIP Journal on Image and Video Processing, 2020,2020(1): 39. |
[20] | ZHOU Z L , CAO Y , WANG M M ,et al. Faster-RCNN based robust coverless information hiding system in cloud environment[J]. IEEE Access, 2019,7: 179891-179897. |
[21] | ZHOU Z , SUN H , HARIT R ,et al. Coverless image steganography without embedding[C]// International Conference on Cloud Computing and Security. Berlin:Springer, 2015: 123-132. |
[22] | HE K M , ZHANG X Y , REN S Q ,et al. Deep residual learning for image recognition[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2016: 770-778. |
[23] | SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition[J]. arXiv Preprint,arXiv:1409.1556, 2015. |
[24] | DUAN X T , NAO L , GOU M X ,et al. High-capacity image steganography based on improved FC-DenseNet[J]. IEEE Access, 2020,8: 170174-170182. |
[25] | BOEHM B . StegExpose - a tool for detecting LSB steganography[J]. arXiv Preprint,arXiv:1410.6656, 2014. |
[26] | 竺乐庆, 郭钰, 莫凌强 ,等. DGANS:基于双重生成式对抗网络的稳健图像隐写模型[J]. 通信学报, 2020,41(1): 125-133. |
ZHU L Q , GUO Y , MO L Q ,et al. DGANS:robustness image steganography model based on double GAN[J]. Journal on Communications, 2020,41(1): 125-133. | |
[27] | SHI H C , DONG J , WANG W ,et al. SSGAN:secure steganography based on generative adversarial networks[C]// Advances in Multimedia Information Processing – PCM 2017. Berlin:Springer, 2018: 534-544. |
[28] | ZHANG K A , CUESTA-INFANTE A ,, XU L ,et al. SteganoGAN:high capacity image steganography with GANs[J]. arXiv Preprint,arXiv:1901.03892, 2019. |
[29] | QIN J H , WANG J , TAN Y ,et al. Coverless image steganography based on generative adversarial network[J]. Mathematics, 2020,8(9): 1394. |
[1] | 陈东昱, 陈华, 范丽敏, 付一方, 王舰. 基于深度学习的随机性检验策略研究[J]. 通信学报, 2023, 44(6): 23-33. |
[2] | 李荣鹏, 汪丙炎, 张宏纲, 赵志峰. 知识增强的语义通信接收端设计[J]. 通信学报, 2023, 44(6): 70-76. |
[3] | 马帅, 裴科, 祁华艳, 李航, 曹雯, 王洪梅, 熊海良, 李世银. 基于生成模型的地磁室内高精度定位算法研究[J]. 通信学报, 2023, 44(6): 211-222. |
[4] | 杨洁, 董标, 付雪, 王禹, 桂冠. 基于轻量化分布式学习的自动调制分类方法[J]. 通信学报, 2022, 43(7): 134-142. |
[5] | 杨秀璋, 彭国军, 李子川, 吕杨琦, 刘思德, 李晨光. 基于Bert和BiLSTM-CRF的APT攻击实体识别及对齐研究[J]. 通信学报, 2022, 43(6): 58-70. |
[6] | 任花, 牛少彰, 任如勇, 岳桢. 基于二维压缩感知的有意义图像加密算法研究[J]. 通信学报, 2022, 43(5): 45-57. |
[7] | 王晓丹, 李京泰, 宋亚飞. DDAC:面向卷积神经网络图像隐写分析模型的特征提取方法[J]. 通信学报, 2022, 43(5): 68-81. |
[8] | 廖勇, 王世义. 高速移动环境下基于RM-Net的大规模MIMO CSI反馈算法[J]. 通信学报, 2022, 43(5): 166-176. |
[9] | 廖育荣, 王海宁, 林存宝, 李阳, 方宇强, 倪淑燕. 基于深度学习的光学遥感图像目标检测研究进展[J]. 通信学报, 2022, 43(5): 190-203. |
[10] | 赵增华, 童跃凡, 崔佳洋. 基于域自适应的Wi-Fi指纹设备无关室内定位模型[J]. 通信学报, 2022, 43(4): 143-153. |
[11] | 廖勇, 程港, 李玉杰. 基于深度展开的大规模MIMO系统CSI反馈算法[J]. 通信学报, 2022, 43(12): 77-88. |
[12] | 段雪源, 付钰, 王坤, 李彬. 基于简单统计特征的LDoS攻击检测方法[J]. 通信学报, 2022, 43(11): 53-64. |
[13] | 霍俊彦, 邱瑞鹏, 马彦卓, 杨付正. 基于最邻近帧质量增强的视频编码参考帧列表优化算法[J]. 通信学报, 2022, 43(11): 136-147. |
[14] | 康海燕, 冀源蕊. 基于本地化差分隐私的联邦学习方法研究[J]. 通信学报, 2022, 43(10): 94-105. |
[15] | 张红霞, 王琪, 王登岳, 王奔. 基于深度学习的区块链蜜罐陷阱合约检测[J]. 通信学报, 2022, 43(1): 194-202. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|