[1] |
周俊, 沈华杰, 林中允 ,等. 边缘计算隐私保护研究进展[J]. 计算机研究与发展, 2020,57(10): 2027-2051.
|
|
ZHOU J , SHEN H J , LIN Z Y ,et al. Research advances on privacy preserving in edge computing[J]. Journal of Computer Research and Development, 2020,57(10): 2027-2051.
|
[2] |
MCMAHAN H B , MOORE E , RAMAGE D ,et al. Communication-efficient learning of deep networks from decentralized data[J]. arXiv Preprint,arXiv:1602.05629, 2016.
|
[3] |
曾诗钦, 霍如, 黄韬 ,等. 区块链技术研究综述:原理、进展与应用[J]. 通信学报, 2020,41(1): 134-151.
|
|
ZENG S Q , HUO R , HUANG T ,et al. Survey of blockchain:principle,progress and application[J]. Journal on Communications, 2020,41(1): 134-151.
|
[4] |
KIM H , PARK J , BENNIS M ,et al. Blockchained on-device federated learning[J]. IEEE Communications Letters, 2020,24(6): 1279-1283.
|
[5] |
QU Y Y , POKHREL S R , GARG S ,et al. A blockchained federated learning framework for cognitive computing in industry 4.0 networks[J]. IEEE Transactions on Industrial Informatics, 2021,17(4): 2964-2973.
|
[6] |
WANG Q L , GUO Y F , WANG X F ,et al. AI at the edge:blockchain-empowered secure multiparty learning with heterogeneous models[J]. IEEE Internet of Things Journal, 2020,7(10): 9600-9610.
|
[7] |
LU Y L , HUANG X H , ZHANG K ,et al. Blockchain empowered asynchronous federated learning for secure data sharing in Internet of vehicles[J]. IEEE Transactions on Vehicular Technology, 2020,69(4): 4298-4311.
|
[8] |
QU Y Y , GAO L X , LUAN T H ,et al. Decentralized privacy using blockchain-enabled federated learning in fog computing[J]. IEEE Internet of Things Journal, 2020,7(6): 5171-5183.
|
[9] |
ZHAO Y , ZHAO J , JIANG L S ,et al. Privacy-preserving blockchain-based federated learning for IoT devices[J]. IEEE Internet of Things Journal, 2021,8(3): 1817-1829.
|
[10] |
LU Y L , HUANG X H , DAI Y Y ,et al. Blockchain and federated learning for privacy-preserved data sharing in industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2020,16(6): 4177-4186.
|
[11] |
QI Y H , HOSSAIN M S , NIE J T ,et al. Privacy-preserving blockchain-based federated learning for traffic flow prediction[J]. Future Generation Computer Systems, 2021,117: 328-337.
|
[12] |
LIU Y , PENG J L , KANG J W ,et al. A secure federated learning framework for 5G networks[J]. IEEE Wireless Communications, 2020,27(4): 24-31.
|
[13] |
SHORT A R , LELIGOU H C , PAPOUTSIDAKIS M ,et al. Using blockchain technologies to improve security in federated learning systems[C]// Proceedings of 2020 IEEE 44th Annual Computers,Software,and Applications Conference (COMPSAC). Piscataway:IEEE Press, 2020: 1183-1188.
|
[14] |
GILAD Y , HEMO R , MICALI S ,et al. Algorand:scaling Byzantine agreements for cryptocurrencies[C]// Proceedings of the 26th Symposium on Operating Systems Principles. New York:ACM Press, 2017: 51-68.
|
[15] |
DWORK C , ROTH A . The algorithmic foundations of differential privacy[J]. Foundations and Trends? in Theoretical Computer Science, 2013,9(3/4): 211-407.
|
[16] |
FREDRIKSON M , JHA S , RISTENPART T . Model inversion attacks that exploit confidence information and basic countermeasures[C]// Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. New York:ACM Press, 2015: 1322-1333.
|
[17] |
CHEN L J , KOUTRIS P , KUMAR A . Model-based pricing for machine learning in a data marketplace[J]. arXiv Preprint,arXiv:1805.11450, 2018.
|
[18] |
KURTULMUS A B , DANIEL K . Trustless machine learning contracts;evaluating and exchanging machine learning models on the ethereum blockchain[J]. arXiv Preprint,arXiv:1802.10185, 2018.
|
[19] |
LI C L , FU Y C , YU F R ,et al. Vehicle position correction:a vehicular blockchain networks-based GPS error sharing framework[J]. IEEE Transactions on Intelligent Transportation Systems, 2020,22(2): 898-912.
|
[20] |
CHEN L , XU L , SHAH N ,et al. On security analysis of proof-ofelapsed-time (PoET)[C]// Proceedings of International Symposium on Stabilization,Safety,and Security of Distributed Systems. Berlin:Springer International Publishing, 2017: 282-297.
|
[21] |
WENG J S , WENG J , ZHANG J L ,et al. DeepChain:auditable and privacy-preserving deep learning with blockchain-based incentive[J]. IEEE Transactions on Dependable and Secure Computing, 2021,18(5): 2438-2455.
|
[22] |
SHAYAN M , FUNG C , YOON C J M ,et al. Biscotti:a ledger for private and secure peer-to-peer machine learning[J]. arXiv Preprint,arXiv:1811.09904, 2018.
|
[23] |
ABADI M , CHU A , GOODFELLOW I ,et al. Deep learning with differential privacy[C]// Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York:ACM Press, 2016: 308-318.
|
[24] |
GEYER R C , KLEIN T , NABI M . Differentially private federated learning:a client level perspective[J]. arXiv Preprint,arXiv:1712.07557, 2017.
|
[25] |
FANG C , GUO Y B , HU Y J ,et al. Privacy-preserving and communication-efficient federated learning in Internet of Things[J]. Computers& Security, 2021,103: 102199.
|
[26] |
XU C G , REN J , ZHANG D Y ,et al. GANobfuscator:mitigating information leakage under GAN via differential privacy[J]. IEEE Transactions on Information Forensics and Security, 2019,14(9): 2358-2371.
|
[27] |
BLANCHARD P , MHAMDI E M E , GUERRAOUI R ,et al. Machine learning with adversaries:byzantine tolerant gradient descent[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems.New York:Curran Associates Inc.. 2017: 118-128.
|
[28] |
DEMERS A , GREENE D , HAUSER C ,et al. Epidemic algorithms for replicated database maintenance[C]// Proceedings of the 6th annual ACM Symposium on Principles of distributed computing. New York:ACM Press, 1987: 1-12.
|
[29] |
HUANG L , JOSEPH A D , NELSON B ,et al. Adversarial machine learning[C]// Proceedings of the 4th ACM workshop on Security and artificial intelligence. New York:ACM Press, 2011: 43-58.
|