智能科学与技术学报 ›› 2021, Vol. 3 ›› Issue (1): 65-75.doi: 10.11959/j.issn.2096-6652.202107

• 专题:情感脑机接口 • 上一篇    下一篇

基于脑机协同智能的情绪识别

刘栋军1,2, 王宇涵1,2, 凌文芬1,2, 彭勇1,2, 孔万增1,2   

  1. 1 杭州电子科技大学计算机学院,浙江 杭州 310018
    2 浙江省脑机协同智能重点实验室,浙江 杭州 310018
  • 修回日期:2021-02-08 出版日期:2021-03-15 发布日期:2021-03-01
  • 作者简介:刘栋军(1997- ),男,杭州电子科技大学计算机学院硕士生,主要研究方向为脑机协同智能、情绪识别。
    王宇涵(1997- ),女,杭州电子科技大学计算机学院硕士生,主要研究方向为脑机协同智能、情绪识别。
    凌文芬(1995- ),女,杭州电子科技大学计算机学院硕士生,主要研究方向为情绪生理信号、特征提取、情绪识别。
    彭勇(1985- ),男,博士,杭州电子科技大学认知与智能计算研究所副教授,主要研究方向为机器学习、模式识别与脑机交互算法及应用。
    孔万增(1980- ),男,博士,杭州电子科技大学计算机学院认知与智能计算研究所教授、博士生导师,杭州电子科技大学研究生院副院长、浙江省脑机协同智能重点实验室主任,主要研究方向为人工智能与模式识别、嵌入式可穿戴计算、脑机交互与认知计算等。
  • 基金资助:
    国家重点研发计划基金资助项目(2017YFE0116800);国家自然科学基金资助项目(U20B2074);浙江省科技计划项目(2018C04012);浙江省“脑机协同智能”重点实验室开放基金项目(20200E10010)

Emotion recognition based on brain and machine collaborative intelligence

Dongjun LIU1,2, Yuhan WANG1,2, Wenfen LING1,2, Yong PENG1,2, Wanzeng KONG1,2   

  1. 1 College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China
    2 Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
  • Revised:2021-02-08 Online:2021-03-15 Published:2021-03-01
  • Supported by:
    The National Key Research and Development Program of China(2017YFE0116800);The National Natural Science Foundation of China(U20B2074);Science and Technology Program of Zhejiang Province(2018C04012);Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province(20200E10010)

摘要:

面部表情识别是一种直接、有效的情绪识别模式。机器学习可以对图像表情进行形式化表征,但由于缺乏大脑的认知表征能力,在小样本数据集或复杂表情(伪装)数据集上的识别性能并不理想。针对此问题,将机器人工智能的形式化表征与人脑通用智能的情感认知能力结合,提出一种基于脑机协同智能的情绪识别方法。首先,从脑电图信号中提取脑电情感特征,以获取大脑对情绪的认知表征。其次,从情感图像中提取图像的视觉特征,以获取机器对情绪的形式化表征。为了增强机器模型的泛化能力,在特征学习中引入样本间的迁移适配。在得到图像视觉特征和脑电情感特征后,采用随机森林回归模型训练得到图像视觉特征与脑电情感特征之间的脑机映射关系。测试图像的图像视觉特征经过脑机映射关系产生虚拟脑电情感特征,然后将虚拟脑电情感特征与图像视觉特征进行融合,用于情绪识别。该方法已经在中国面孔表情图片系统上进行了验证,发现对7种情绪的平均识别准确率为88.51%,相比单纯基于图像的方法,提升了3%~5%。

关键词: 情绪识别, 脑电图信号, 脑机协同智能, 深度学习

Abstract:

Emotion recognition is a direct and effective mode of emotion recognition.Machine learning relies on the formal representation of image expressions, lacks the cognitive representation ability of the brain, and has poor recognition performance on small sample data sets or complex expression (camouflage) data sets.To this end, the formal representation of machine artificial intelligence was combined with the emotional cognitive ability of human brain general intelligence, and a brain-machine collaborative intelligence emotion recognition method was proposed.Firstly, electroencephalogram (EEG) emotional features were extracted from EEG to obtain the brain’s cognitive representation of emotions.Secondly, the visual features of the image were extracted from the emotional image to obtain the machine’s formal representation of the emotion.In order to enhance the generalization ability of the machine model, the transfer adaptation between samples was introduced in the feature learning.After obtaining image visual features and EEG emotional features, the random forest regression model was trained to obtain the brain-machine mapping relationship between image visual features and EEG emotional features.The visual features of the test image were generated through the brain-machine mapping relationship to generate virtual EEG emotional features, and then the virtual EEG emotional features and image visual features were fused for emotion recognition.This method has been verified on the Chinese facial affective picture system (CFAPS) and found that the average recognition accuracy of the seven emotions is 88.51%, which is 3%~5% higher than the image-based method.

Key words: emotion recognition, EEG signal, brain-machine collaborative intelligence, deep learning

中图分类号: 

No Suggested Reading articles found!