智能科学与技术学报 ›› 2020, Vol. 2 ›› Issue (4): 401-411.doi: 10.11959/j.issn.2096-6652.202043

• 专刊:深度强化学习 • 上一篇    

无线网络信号传输建模:一种区间二型模糊集成深度学习方法

赵亮, 谢志峰, 张坤鹏, 郑玉卿, 付园坤   

  1. 河南工业大学电气工程学院,河南 郑州 450001
  • 修回日期:2020-11-30 出版日期:2020-12-15 发布日期:2020-12-01
  • 作者简介:赵亮(1978- ),男,博士,河南工业大学电气工程学院副教授,主要研究方向为智能通信、智慧医疗、平行学习等。
    谢志峰(1996- ),男,河南工业大学电气工程学院硕士生,主要研究方向为深度学习、智能通信等。
    张坤鹏(1987- ),男,博士,河南工业大学电气工程学院讲师,主要研究方向为智能交通、智能通信等。
    郑玉卿(1987- ),男,博士,河南工业大学电气工程学院讲师,主要研究方向为智能通信、智能控制。
    付园坤(1995- ),男,河南工业大学电气工程学院硕士生,主要研究方向为智慧医疗、智能通信等。
  • 基金资助:
    国家自然科学基金资助项目(61105079);国家自然科学基金资助项目(61473114);国家自然科学基金资助项目(62002101);河南省自然科学基金资助项目(162300410059);河南工业大学省属高校基本科研业务费专项资金资助项目(2018RCJH16);河南工业大学高层次人才科研基金资助项目(2019BS044)

Modeling signal propagation in wireless network:an interval type-2 fuzzy ensemble deep learning approach

Liang ZHAO, Zhifeng XIE, Kunpeng ZHANG, Yuqing ZHENG, Yuankun FU   

  1. College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
  • Revised:2020-11-30 Online:2020-12-15 Published:2020-12-01
  • Supported by:
    The National Natural Science Foundation of China(61105079);The National Natural Science Foundation of China(61473114);The National Natural Science Foundation of China(62002101);The Natural Science Foundation of Henan Province of China(162300410059);Fundamental Research Funds for the Henan Provincial Col-leges and Universities in Henan University of Technology(2018RCJH16);High-level Talent Research Fund of Henan University of Technology(2019BS044)

摘要:

针对常用的信号传输模型存在使用场景单一、预测精度不佳的问题,提出一种适用于多场景的数据驱动无线信号传输模型。首先根据先验知识从预处理后的数据构造初始特征,接着进行特征选择,以得到输入特征集合。然后分析建模需求,选择深度置信网络(DBN)、残差网络(ResNet)和堆叠自编码器(SAE)作为区间二型模糊规则的后件(个体深度学习器),经过区间二型模糊推理进行集成。最后采用5G网络信号传输实测数据,并进行实验验证。结果表明,3种个体深度学习器在测试集上的表现均优于Cost231-Hata模型和反向传播神经网络(BPNN)模型,其中ResNet的准确度高于DBN和SAE模型。区间二型模糊集成深度学习模型的性能与其个体深度学习器的性能以及模糊规则数目呈正相关,同时异质集成在测试集上的表现优于同质集成。

关键词: 信号传输模型, 特征工程, 区间二型模糊推理, 集成学习, 深度学习

Abstract:

There exist some problems in the commonly used signal propagation models, such as single usage scenario and poor prediction accuracy.A data-driven wireless signal propagation model suitable for multiple scenarios was proposed.Firstly, the initial features were constructed from the preprocessed data according to the prior knowledge, and then the input feature set was obtained by using feature selection technique.Then analyzing the modeling requirements, selecting the deep belief network (DBN), residual network (ResNet) and stacked auto encoder (SAE) as the consequents (individual learners) of the interval type-2 fuzzy rules, and leveraged interval type-2 fuzzy inference to ensemble them.Finally, the actual measurement data of 5G signal propagation was applied for experimental verification.The results demonstrate that the performance of the three individual learners for the test set is better than those of the Cost231-Hata and back propagation neural network (BPNN), as well as the accuracy of ResNet is higher than those of DBN and SAE.Moreover, the performance of the interval type-2 fuzzy ensemble deep learning model is positively correlated with those of its individual learners and the number of fuzzy rules.Meanwhile, the heterogeneous ensemble is superior to the homogeneous counterpart for the test set.

Key words: signal propagation model, feature engineering, interval type-2 fuzzy inference, ensemble learning, deep learning

中图分类号: 

No Suggested Reading articles found!