智能科学与技术学报 ›› 2020, Vol. 2 ›› Issue (2): 107-115.doi: 10.11959/j.issn.2096-6652.202012
修回日期:
2020-05-13
出版日期:
2020-06-20
发布日期:
2020-07-14
作者简介:
袁小锋(1988- ),男,博士,中南大学自动化学院副教授,主要研究方向为工业大数据与人工智能、深度学习与模式识别、过程监测与软测量建模等|王雅琳(1973- ),女,博士,中南大学自动化学院教授、副院长、博士生导师,主要研究方向为大数据分析与处理、智能集成建模、过程监测与故障诊断等|阳春华(1965- ),女,博士,中南大学自动化学院教授、院长、博士生导师,主要研究方向为复杂工业过程建模与优化、分析检测与自动化装置、智能化系统等|桂卫华(1950- ),男,中国工程院院士,中南大学自动化学院教授,主要研究方向为工业大系统递阶和分散控制理论及应用、复杂工业过程建模、优化与控制应用和知识自动化
基金资助:
Xiaofeng YUAN,Yalin WANG(),Chunhua YANG,Weihua GUI
Revised:
2020-05-13
Online:
2020-06-20
Published:
2020-07-14
Supported by:
摘要:
深度学习是近年来发展的人工智能技术。相比于传统浅层学习模型,深度学习具有强大的特征表示和函数拟合能力。深度学习能够从海量数据中提取层次特征,其在流程工业过程数据驱动建模中具有较大的潜力和应用前景。首先简单介绍了深度学习的发展历程;然后,介绍了4类广泛使用的深度学习模型以及它们在流程工业过程数据建模中的应用;最后,在流程工业过程数据建模领域对深度学习进行了简要总结。
中图分类号:
袁小锋, 王雅琳, 阳春华, 等. 深度学习在流程工业过程数据建模中的应用[J]. 智能科学与技术学报, 2020, 2(2): 107-115.
Xiaofeng YUAN, Yalin WANG, Chunhua YANG, et al. The application of deep learning in data-driven modeling of process industries[J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(2): 107-115.
[1] | 张钹 . 人工智能进入后深度学习时代[J]. 智能科学与技术学报, 2019,1(1): 4-6. |
ZHANG B . Artificial intelligence is entering the post deep-learning era[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(1): 4-6. | |
[2] | 刘远平, 宋昱锴, 张小燕 ,等. 基于深度学习的髋关节应力分布算法研究[J]. 智能科学与技术学报, 2019,1(3): 260-268. |
LIU Y P , SONG Y K , ZHANG X Y ,et al. Research on hip joint stress distribution algorithms based on deep learning[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(3): 260-268 | |
[3] | MCCULLOCH W S , PITTS W . A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biophysics, 1943,52(1-2): 99-115. |
[4] | ROSENBLATT F . The perceptron:a probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958,65(6): 386-408. |
[5] | MINSKY M , PAPERT S . Perceptrons an introduction to computational geometry[M]. Cambridg: MIT PressPress, 1969. |
[6] | WERBOS P . Beyond regression:new tools for prediction and analysis in the behavioral sciences[D]. Boston:Harvard University, 1974. |
[7] | RUMMELHART D E , HINTON G E , WILLIAMS R J . Learning internal representations by error propagation[J]. Nature, 1986,323(2): 318-362. |
[8] | CORTES C , WAPNIK V . Support-vector networks[J]. Machine Learning, 1995,20(3): 273-297. |
[9] | HINTON G E , OSINDERO S , THE Y W . A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006,18(7): 1527-1554. |
[10] | KRIZHEVSKY A , SUTSKEVER I , HINTON G . Imagenet classification with deep convolutional neural networks[C]// Advances in Neural Information Processing Systems.[S.l.:s.n]. 2012: 1097-1105. |
[11] | WANG Y L , PAN Z F , YANG C H ,et al. A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network[J]. ISA Transactions, 2020,96: 457-467. |
[12] | SHANG C , YANG F , HUANG D X ,et al. Data-driven soft sensor development based on deep learning technique[J]. Journal of Process Control, 2014,24(3): 223-233. |
[13] | 刘瑞兰, 毛佳敏 . 基于深度置信网络的 4-CBA 软测量建模[J]. 计算机工程与应用, 2017,53(6): 227-230. |
LIU R L , MAO J M . Soft sensor modeling of 4-CBA based on deep belief networks[J]. Computer Engineering and Applications, 2017,53(6): 227-230. | |
[14] | 康岩, 卢慕超, 阎高伟 . 基于 DBN-ELM 的球磨机料位软测量方法研究[J]. 仪表技术与传感器, 2015(4): 73-75,92. |
KANG Y , LU M C , YAN G W . Soft sensor for ball mill fill level based on DBN-ELM model[J]. Instrument Technique and Sensor, 2015(4): 73-75,92. | |
[15] | LIU Y , FAN Y , CHEN J H . Flame images for oxygen content prediction of combustion systems using DBN[J]. Energy & Fuels, 2017,31(8): 8776-8783. |
[16] | YUAN Z , WANG B , LIANG K ,et al. In application of deep belief network in prediction of secondary chemical components of sinter[C]// The 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). Piscataway:IEEE Press, 2018: 2746-2751. |
[17] | ZHANG Z P , ZHAO J S . A deep belief network based fault diagnosis model for complex chemical processes[J]. Computers & Chemical Engineering, 2017,107: 395-407. |
[18] | 赵辉, 赵德涛, 岳有军 ,等. 基于深度置信网络的高炉炉况故障分类方法的研究[J]. 铸造技术, 2018,39(5): 1028-1032. |
ZHAO H , ZHAO D T , YUE Y J ,et al. Research on fault classification of blast furnace condition based on deep belief network[J]. Foundry Technology, 2018,39(5): 1028-1032. | |
[19] | 葛强强 . 基于深度置信网络的数据驱动故障诊断方法研究[D]. 哈尔滨:哈尔滨工业大学, 2016. |
GE Q Q . Research on data driven fault diagnosis method based on deep belief network[D]. Harbin:Harbin Institute of Technology, 2016. | |
[20] | YUAN X F , GU Y J , WANG Y L ,et al. A deep supervised learning framework for data-driven soft sensor modeling of industrial processes[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019: 1-10. |
[21] | YUAN X F , HUANG B , WANG Y L ,et al. Deep learning based feature representation and its application for soft sensor modeling with variable-wise weighted SAE[J]. IEEE Transactions on Industrial Informatics, 2018,14(7): 3235-3243. |
[22] | YUAN X F , OU C , WANG Y L ,et al. Deep quality-related feature extraction for soft sensing modeling:a deep learning approach with hybrid VW-SAE[J]. Neurocomputing, 2019 |
[23] | YUAN X F , ZHOU J , HUANG B ,et al. Hierarchical quality-relevant feature representation for soft sensor modeling:a novel deep learning strategy[J]. IEEE Transactions on Industrial Informatics, 2020,16(6): 3721-3730. |
[24] | 邱禹, 刘乙奇, 吴菁 ,等. 基于深层神经网络的多输出自适应软测量建模[J]. 化工学报, 2018,69(7): 3101-3113. |
QIU Y , LIU Y Q , WU J ,et al. A self-adaptive multi-output soft sensor modeling based on deep neural network[J]. CIESC Jorunal, 2018,69(7): 3101-3113. | |
[25] | KONG D H , YAN X F . Industrial process deep feature representation by regularization strategy autoencoders for process monitoring[J]. Measurement Science Technology, 2019,31(2):025104. |
[26] | YAN S F , YAN X F . Design teacher and supervised dual stacked auto-encoders for quality-relevant fault detection in industrial process[J]. Applied Soft Computing, 2019,81:105526. |
[27] | YAN S F , YUAN X F . Using labeled autoencoder to supervise neural network combined with k-nearest neighbor for visual industrial process monitoring[J]. Industrial & Engineering Chemistry Research, 2019,58(23): 9952-9958. |
[28] | 蒋立 . 基于自编码器模型的非线性过程监测[D]. 杭州:浙江大学, 2018. |
JIANG L . Nonlinear process monitoring based on auto-encoder model[D]. Hangzhou:Zhejiang University, 2018. | |
[29] | ZHANG T S , WANG W , YE H ,et al. Fault detection for ironmaking process based on stacked denoising autoencoders[C]// The 2016 American Control Conference (ACC).[S.l.:s.n]. 2016. |
[30] | ZHANG Z H , JIANG T , LI S H ,et al. Automated feature learning for nonlinear process monitoring,an approach using stacked denoising autoencoder and k-nearest neighbor rule[J]. Journal of Process Control, 2018,64: 49-61. |
[31] | LECUN Y , BOTTOU L , BENGIO Y ,et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11): 2278-2324. |
[32] | HORN Z C , AURET L , MCCOY J T ,et al. Performance of convolutional neural networks for feature extraction in froth flotation sensing[J]. IFAC Papersonline, 2017,50(2): 13-18. |
[33] | 易令, 吕忠元, 丁进良 ,等. 面向原油总氢物性预测的数据扩增预处理方法[J]. 控制与决策, 2018,33(12): 2153-2160. |
YI L , LYU Z Y , DING J L ,et al. Data pretreatment approach for crude oil hydrogen properties prediction[J]. Control and Decision, 2018,33(12): 2153-2160. | |
[34] | WANG K C , SHANG C , LIU L ,et al. Dynamic soft sensor development based on convolutional neural networks[J]. Industrial & Engineering Chemistry Research, 2019,58(26): 11521-11531. |
[35] | WU H , ZHAO J S . Deep convolutional neural network model based chemical process fault diagnosis[J]. Computers & Chemical Engineering, 2018:115. |
[36] | 苏堪裂 . 基于卷积神经网络的化工过程故障诊断研究[D]. 广州:华南理工大学, 2019. |
SU K L . Fault diagnosis of chemical process based on convolutional neural network research[D]. Guangzhou:South China University of Technology, 2019. | |
[37] | LEE K B , CHEON S , KIM C O . A convolutional neural network for fault classification and diagnosis in semiconductor manufacturing processes[J]. IEEE Transactions on Semiconductor Manufacturing, 2017,30(2): 135-142. |
[38] | BENGIO Y , SIMARD P , FRASCONI P . Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994,5(2): 157-166. |
[39] | HOCHREITER S , SCHMIDHUBER J . Long short-term memory[J]. Neural Computation, 1997,9(8): 1735-1780. |
[40] | CHO K , WAN MERRIENBOER B , GULCEHRE C ,et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation[C]// The 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).[S.l.:s.n. ], 2014: 1724-1734. |
[41] | SU H T , MCAVOY T J , WERBOS P . Long-term predictions of chemical processes using recurrent neural networks:a parallel training approach[J]. Industrial Engineering Chemistry Research, 1992,31(5): 1338-1352. |
[42] | CHEN L Z , NGUANG S K , LI X M ,et al. Soft sensors for on-line biomass measurements[J]. Bioprocess and Biosystems Engineering, 2004,26(3): 191-195. |
[43] | ZHAO J , LIU Q L , WANG W ,et al. Hybrid neural prediction and optimized adjustment for coke oven gas system in steel industry[J]. IEEE Transactions on Neural Networks & Learning Systems, 2012,23(3): 439-450. |
[44] | FU J G , XIAO H , WANG T ,et al. Prediction model of desulfurization efficiency of coal-fired power plants based on long short-term memory neural network[C]// The 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData).[S.l.:s.n. ], 2019: 40-45. |
[45] | HAN Y M , ZHOU R D , GENG Z Q ,et al. Production prediction modeling of industrial processes based on Bi-LSTM[C]// The 34rd Youth Academic Annual Conference of Chinese Association of Automation.[S.l.:s.n. ], 2019: 285-289. |
[46] | YUAN X F , LI L , WANG Y L . Nonlinear dynamic soft sensor modeling with supervised long short-term memory network[J]. IEEE Transactions on Industrial Informatics, 2020,16(5): 3168-3176. |
[47] | YUAN X F , LI L , WANG Y L ,et al. Deep learning for quality prediction of nonlinear dynamic process with variable attention-based long short-term memory network[J]. The Canadian Journal of Chemical Engineering, 2019 |
[48] | WANG K , GOPALUNI B , CHEN J H ,et al. Deep learning of complex batch process data and its application on quality prediction[J]. IEEE Transactions on Industrial Informatics, 2018:1. |
[49] | SUN Q Q , GE Z Q . Probabilistic sequential network for deep learning of complex process data and soft sensor application[J]. IEEE Transactions on Industrial Informatics, 2018,15(5): 2700-2709. |
[50] | KATARIA G , SINGH K . Recurrent neural network based soft sensor for monitoring and controlling a reactive distillation column[J]. Chemical Product and Process Modeling, 2017,13(3). |
[1] | 黄哲, 王永才, 李德英. 3D目标检测方法研究综述[J]. 智能科学与技术学报, 2023, 5(1): 7-31. |
[2] | 卢经纬, 程相, 王飞跃. 求解微分方程的人工智能与深度学习方法:现状及展望[J]. 智能科学与技术学报, 2022, 4(4): 461-476. |
[3] | 张俊, 许沛东, 陈思远, 高天露, 戴宇欣, 张科, 赵杭, 高杰迈, 白昱阳, 李金星, 张浩然, 李湘, 陈玖香. 物理-数据-知识混合驱动的人机混合增强智能系统管控方法[J]. 智能科学与技术学报, 2022, 4(4): 571-583. |
[4] | 陈妍, 罗雪琴, 梁伟, 谢永芳. 基于情感信息融合注意力机制的抑郁症识别[J]. 智能科学与技术学报, 2022, 4(4): 600-609. |
[5] | 栗仁武, 张凌霄, 高林, 李淳芃, 蒋浩. 基于点云的类级别物体姿态估计[J]. 智能科学与技术学报, 2022, 4(2): 246-254. |
[6] | 李琳辉, 周彬, 任威威, 连静. 行人轨迹预测方法综述[J]. 智能科学与技术学报, 2021, 3(4): 399-411. |
[7] | 李颖, 陈龙, 黄钊宏, 孙杨, 蔡国榕. 基于多尺度卷积神经网络特征融合的植株叶片检测技术[J]. 智能科学与技术学报, 2021, 3(3): 304-311. |
[8] | 田庆, 胡蓉, 李佐勇, 蔡远征, 余兆钗. 基于SE-YOLOv5s的绝缘子检测[J]. 智能科学与技术学报, 2021, 3(3): 312-321. |
[9] | 刘文, 胡琨林, 李岩, 刘钊. 移动目标轨迹预测方法研究综述[J]. 智能科学与技术学报, 2021, 3(2): 149-160. |
[10] | 张阳, 胡月, 辛东嵘. 一种考虑时空关联的深度学习短时交通流预测方法[J]. 智能科学与技术学报, 2021, 3(2): 172-178. |
[11] | 刘栋军, 王宇涵, 凌文芬, 彭勇, 孔万增. 基于脑机协同智能的情绪识别[J]. 智能科学与技术学报, 2021, 3(1): 65-75. |
[12] | 赵亮, 谢志峰, 张坤鹏, 郑玉卿, 付园坤. 无线网络信号传输建模:一种区间二型模糊集成深度学习方法[J]. 智能科学与技术学报, 2020, 2(4): 401-411. |
[13] | 田思佳,顾强,胡蓉,李锐戈,何顶新. 一种基于深度学习的机械臂分拣方法[J]. 智能科学与技术学报, 2020, 2(3): 268-274. |
[14] | 王飞跃,曹东璞,魏庆来. 强化学习:迈向知行合一的智能机制与算法[J]. 智能科学与技术学报, 2020, 2(2): 101-106. |
[15] | 刘凯, 李浥东, 林伟鹏. 车辆再识别技术综述[J]. 智能科学与技术学报, 2020, 2(1): 10-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|