智能科学与技术学报 ›› 2022, Vol. 4 ›› Issue (4): 592-599.doi: 10.11959/j.issn.2096-6652.202211

• 学术论文 • 上一篇    下一篇

混合骨骼特征的三帧间差分手势识别方法研究

张永强1,2, 宋美霖1, 刘天虎1, 满梦华2   

  1. 1 河北科技大学信息科学与工程学院,河北 石家庄 050018
    2 陆军工程大学石家庄校区电磁环境效应国家级重点实验室,河北 石家庄 050003
  • 修回日期:2021-10-17 出版日期:2022-12-15 发布日期:2022-12-01
  • 作者简介:张永强(1981− ),男,博士,河北科技大学信息科学与工程学院副教授,主要研究方向为人工智能、物联网
    宋美霖(1997− ),女,河北科技大学信息科学与工程学院硕士生,主要研究方向为人工智能和图像处理
    刘天虎(1995− ),男,河北科技大学信息科学与工程学院硕士生,主要研究方向为人工智能和图像处理
    满梦华(1984− ),男,博士,陆军工程大学石家庄校区电磁环境效应国家级重点讲师,主要研究方向为电磁防护理论与技术
  • 基金资助:
    国防基础科研计划(JCKYS2020DC202);河北省自然科学基金资助项目(F2018208116);河北省高等学校科学技术研究重点项目(ZD2020176);河北省高等学校科学技术研究重点项目(ZD2021048)

Research on three frame difference gesture recognition method based on mixed bone features

Yongqiang ZHANG1,2, Meilin SONG1, Tianhu LIU1, Menghua MAN2   

  1. 1 School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
    2 National Key Laboratory on Electromagnetic Environment Effects, Shijiazhuang Campus, Army Engineering University, Shijiazhuang 050003, China
  • Revised:2021-10-17 Online:2022-12-15 Published:2022-12-01
  • Supported by:
    The National Defense Basic Research Program(JCKYS2020DC202);The Natural Science Foundation of Hebei Province(F2018208116);The Key Project of Science and Technology Research in Colleges and Universities of Hebei Province(ZD2020176);The Key Project of Science and Technology Research in Colleges and Universities of Hebei Province(ZD2021048)

摘要:

三帧间差分检测作为手势识别中的一种优秀算法,可在一定程度上解决二帧间差分法的“重影”问题。但三帧间差分检测在识别手势时会出现空洞,无法适应光照骤变等情况。针对此问题,提出了一种混合骨骼特征的三帧间差分手势识别方法。该方法首先对数据集进行二值化以统一大小,降低背景颜色干扰和计算量;然后使用混合骨骼特征的三帧间差分进行手势检测与追踪;最后通过神经网络进行手势识别分类。该方法可以有效地重点训练手部特征,显著降低了背景对手势识别的干扰,同时还提升了识别效率。经实验验证,该方法在复杂背景下的识别率最低为 93.38%,最高为 99.99%,满足鲁棒性的要求,为在复杂图像背景下的手势识别提供了一个新的思路。

关键词: 手势识别, 三帧间差分, 骨骼特征, 神经网络

Abstract:

As an excellent algorithm in gesture recognition, three frame difference detection can solve the “double shadow” problem of two frame difference method to a certain extent.But the three frame difference detection will have holes when recognizing gestures, and it cannot adapt to sudden changes in lighting and so on.To solve this problem, the three frame difference gesture recognition method based on mixed bone features was proposed.Firstly, the binary size of the data set was unified, and the background color inter-ference and computation were reduced.Secondly, the three frame difference of mixed bone features was used to detect and track gestures.Finally, the neural network was used for gesture recognition and classification.This method could effectively train hand characteristics, significantly reduce the interference of background on gesture recognition, and improve the recognition efficiency.The experimental results showed that the minimum recognition rate of this method was 93.38% and the maximum was 99.99% in complex background, which could meet the requirement of robustness.This method provides a new idea for gesture recognition in complex image background.

Key words: gesture recognition, three frame difference, bone feature, neural network

中图分类号: 

No Suggested Reading articles found!