Chinese Journal of Intelligent Science and Technology ›› 2022, Vol. 4 ›› Issue (4): 461476.doi: 10.11959/j.issn.20966652.202255
• Review Intelligence • Next Articles
Jingwei LU^{1}^{,}^{2}, Xiang CHENG^{1}^{,}^{3}, FeiYue WANG^{1}^{,}^{3}
Revised:
20221118
Online:
20221215
Published:
20221201
Supported by:
CLC Number:
Jingwei LU,Xiang CHENG,FeiYue WANG. Artificial intelligence and deep learning methods for solving differential equations: the state of the art and prospects[J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 461476.
[61]  郑素佩, 林云云, 封建湖 ,等. 浅水波方程的粘性正则化 PINN 算法[J]. 计算物理, 2022: 115. 
ZHENG S P , LIN Y Y , FENG J H ,et al. Viscous regularization PINN algorithm for shallow water equations[J]. Chinese Journal of Computational Physics, 2022: 115.  
[62]  GOSWAMI S , ANITESCU C , CHAKRABORTY S ,et al. Transfer learning enhanced physics informed neural network for phasefield modeling of fracture[J]. Theoretical and Applied Fracture Mechanics, 2020,106. 
[63]  ZHANG E R , YIN M L , KARNIADAKIS G E . Physicsinformed neural networks for nonhomogeneous material identification in elasticity imaging[J]. arXiv preprint, 2020,arXiv:2009.04525. 
[64]  BECK C , BECKER S , GROHS P ,et al. Solving the Kolmogorov PDE by means of deep learning[J]. Journal of Scientific Computing, 2021,88(3): 128. 
[65]  GLAU K , WUNDERLICH L . The deep parametric PDE method and applications to option pricing[J]. Applied Mathematics and Computation, 2022,432. 
[66]  BARMPARIS G D , TSIRONIS G P . Physicsinformed machine learning for the COVID19 pandemic:adherence to social distancing and shortterm predictions for eight countries[J]. Quantitative Biology, 2022,10(2): 139. 
[67]  GRIMM V , HEINLEIN A , KLAWONN A ,et al. Estimating the timedependent contact rate of SIR and SEIR models in mathematical epidemiology using physicsinformed neural networks[J]. Electronic Transactions on Numerical Analysis, 2021,56: 127. 
[1]  ZILL D . A first course in differential equations with modeling applications[M]. Stamford: Cengage Learning, 2012. 
[2]  HART J K , MARTINEZ K . Environmental sensor networks:a revolution in the earth system science?[J]. EarthScience Reviews, 2006,78(3/4): 177191. 
[3]  THOMAS J . Numerical partial differential equations:finite difference methods[M]. New York: Springer Science ＆ Business Media, 2013. 
[4]  DONEA J , HUERTA A . Finite element methods for flow problems[M]. Hoboken: John Wiley ＆ Sons, 2003. 
[68]  CAVANAGH H , MOSBACH A , SCALLIET G ,et al. Physicsinformed deep learning characterizes morphodynamics of Asian soybean rust disease[J]. Nature Communications, 2021,12: 19. 
[69]  ZHANG S T , WU J R , WANG Y G ,et al. A physicsinformed statistical learning framework for forecasting local suspended sediment concentrations in marine environment[J]. Water Research, 2022,218. 
[70]  GROSS M R , HYMAN J D , SRINIVASAN S ,et al. A physicsinformed machine learning workflow to forecast production in a fractured Marcellus shale reservoir[C]// Proceedings of the 9th Unconventional Resources Technology Conference. Tulsa:American Association of Petroleum Geologists, 2021. 
[71]  KASHINATH K , MUSTAFA M , ALBERT A ,et al. Physicsinformed machine learning:case studies for weather and climate modelling[J]. Philosophical Transactions Series A,Mathematical,Physical,and Engineering Sciences, 2021,379(2194). 
[72]  POMBO D V , RINCON M J , BACHER P ,et al. Assessing stacked physicsinformed machine learning models for colocated windsolar power forecasting[J]. Sustainable Energy,Grids and Networks, 2022,32. 
[73]  JHONG B C , LIN C Y , JHONG Y D ,et al. Assessing the effective spatial characteristics of input features through physicsinformed machine learning models in inundation forecasting during typhoons[J]. Hydrological Sciences Journal, 2022,67(10): 15271545. 
[5]  FEIT M , FLECK J , STEIGER A . Solution of the Schr?dinger equation by a spectral method[J]. Journal of Computational Physics, 1982,47(3): 412433. 
[6]  LIU G R , GUY T . An introduction to meshfree methods and their programming[M]. New York: Springer Science ＆ Business Media, 2005. 
[74]  BUKHARI A H , RAJA M A Z , SHOAIB M ,et al. Fractional order Lorenz based physics informed SARFIMANARX model to monitor and mitigate megacities air pollution[J]. Chaos,Solitons ＆ Fractals, 2022,161. 
[75]  RICE J L , XU W W , AUGUST A . Analyzing Koopman approaches to physicsinformed machine learning for longterm seasurface temper ature forecasting[J]. arXiv preprint, 2020,arXiv:2010.00399. 
[7]  LECUN Y , BENGIO Y , HINTON G . Deep learning[J]. Nature, 2015,521(7553): 436444. 
[8]  SUTTON R S , BARTO A G . Reinforcement learning:an introduction[M]. Cambridge: MIT Press, 2018. 
[9]  李涛, 魏庆来 . 基于深度强化学习的智能暖气温度控制系统[J]. 智能科学与技术学报, 2020,2(4): 348353. 
LI T , WEI Q L . Intelligent heating temperature control system based on deep reinforcement learning[J]. Chinese Journal of Intelligent Science and Technology, 2020,2(4): 348353.  
[10]  覃缘琪, 季青原, 葛俊 ,等. 城市交通路网动态短时推理与精准预测研究[J]. 智能科学与技术学报, 2022,4(3): 380395. 
QIN Y Q , JI Q Y , GE J ,et al. Shortterm traffic state reasoning and precise prediction in urban networks[J]. Chinese Journal of Intelligent Science and Technology, 2022,4(3): 380395.  
[11]  曾淦雄, 柯逍 . 基于 3D 卷积的图像序列特征提取与自注意力的车牌识别方法[J]. 智能科学与技术学报, 2021,3(3): 268279. 
ZENG G X , KE X . 3D convolutionbased image sequence feature extraction and selfattention for license plate recognition method[J]. Chinese Journal of Intelligent Science and Technology, 2021,3(3): 268279.  
[76]  HORNIK K , STINCHCOMBE M , WHITE H . Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989,2(5): 359366. 
[77]  WANG F Y . The emergence of intelligent enterprises:from CPS to CPSS[J]. IEEE Intelligent Systems, 2010,25(4): 8588. 
[12]  杜倩龙, 宗成庆, 苏克毅 . 利用上下文相似度增强词对齐效果的自然语言推理方法[J]. 智能科学与技术学报, 2020,2(1): 2635. 
DU Q L , ZONG C Q , SU K Y . Enhancing alignment with context similarity for natural language inference[J]. Chinese Journal of Intelligent Science and Technology, 2020,2(1): 2635.  
[13]  洪依, 孙成立, 冷严 . 基于超轻量通道注意力的端对端语音增强方法[J]. 智能科学与技术学报, 2021,3(3): 351358. 
HONG Y , SUN C L , LENG Y . Endtoend speech enhancement based on ultralightweight channel attention[J]. Chinese Journal of Intelligent Science and Technology, 2021,3(3): 351358.  
[14]  SILVER D , SCHRITTWIESER J , SIMONYAN K ,et al. Mastering the game of Go without human knowledge[J]. Nature, 2017,550(7676): 354359. 
[15]  JUMPER J , EVANS R , PRITZEL A ,et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021,596(7873): 583589. 
[78]  王飞跃 . 平行系统方法与复杂系统的管理和控制[J]. 控制与决策, 2004,19(5): 485489,514. 
WANG F Y . Parallel system methods for management and control of complex systems[J]. Control and Decision, 2004,19(5): 485489,514.  
[79]  王飞跃 . 平行控制与数字孪生：经典控制理论的回顾与重铸[J]. 智能科学与技术学报, 2020,2(3): 293300. 
WANG F Y . Parallel control and digital twins:control theory revisited and reshaped[J]. Chinese Journal of Intelligent Science and Technology, 2020,2(3): 293300.  
[16]  CIODARO T , DEVA D , DE SEIXAS J M ,et al. Online particle detection with neural networks based on topological calorimetry information[J]. Journal of Physics:Conference Series, 2012,368. 
[17]  HELMSTAEDTER M , BRIGGMAN K L , TURAGA S C ,et al. Connectomic reconstruction of the inner plexiform layer in the mouse retina[J]. Nature, 2013,500(7461): 168174. 
[80]  WANG F Y . The DAO to MetaControl for MetaSystems in metaverses:the system of parallel control systems for knowledge automation and control intelligence in CPSS[J]. IEEE/CAA Journal of Automatica Sinica, 2022,9(11): 18991908. 
[81]  WANG F Y . Shadow systems:a new concept for nested and embedded cosimulation for intelligent systems[R]. 1994. 
[18]  BOMMASANI R , HUDSON D A , ADELI E ,et al. On the opportunities and risks of foundation models[J]. arXiv preprint， 2021,arXiv:2108.07258. 
[19]  LI X , WANG Y T , YAN L ,et al. ParallelEyeCS:a new dataset of synthetic images for testing the visual intelligence of intelligent vehicles[J]. IEEE Transactions on Vehicular Technology, 2019,68(10): 96199631. 
[82]  WEI Q L , LI H Y , WANG F Y . Parallel control for continuoustime linear systems:a case study[J]. IEEE/CAA Journal of Automatica Sinica, 2020,7(4): 919928. 
[83]  LU J W , WEI Q L , WANG F Y . Parallel control for optimal tracking via adaptive dynamic programming[J]. IEEE/CAA Journal of Automatica Sinica, 2020,7(6): 16621674. 
[20]  EVERINGHAM M , GOOL L , WILLIAMS C K I ,et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010,88(2): 303338. 
[21]  KARNIADAKIS G E , KEVREKIDIS I G , LU L ,et al. Physicsinformed machine learning[J]. Nature Reviews Physics, 2021,3(6): 422440. 
[84]  LU J W , WEI Q L , WANG Z Y ,et al. Eventtriggered optimal control for discretetime multiplayer nonzerosum games using parallel control[J]. Information Sciences, 2022,584: 519535. 
[85]  LU J W , WEI Q L , LIU Y J ,et al. Eventtriggered optimal parallel tracking control for discretetime nonlinear systems[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems, 2022,52(6): 37723784. 
[22]  RAISSI M , PERDIKARIS P , KARNIADAKIS G E . Physicsinformed neural networks:a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019,378: 686707. 
[23]  王飞跃, 王景美, 谢贻权 . 最佳格点集在最小二乘法中的应用[J]. 浙江大学学报(自然科学版), 1988,22(3): 3343. 
[86]  LU J W , WEI Q L , ZHOU T M ,et al. Eventtriggered nearoptimal control for unknown discretetime nonlinear systems using parallel control[J]. IEEE Transactions on Cybernetics, 2022. 
[87]  DEVLIN J , CHANG M W , LEE K ,et al. BERT:pretraining of deep bidirectional transformers for language understanding[C]// Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.[S.l.:s.n.], 2019: 41714186. 
[23]  WANG F Y , WANG J M , XIE Y Q . An application of good lattice points in least square method[J]. Journal of Zhejiang University (Natural Science), 1988,22(3): 3343. 
[24]  王飞跃, 谢贻权 . 最小二乘加权残值方法的速进算法[C]// 第三届全国加权残值法会议论文集. 成都:西南交通大学出版社, 1989: 312316. 
[88]  BROWN T , MANN B , RYDER N ,et al. Language models are fewshot learners[C]// Proceedings of the Conference on Neural Information Processing Systems.[S.l.:s.n.], 2020: 18771901. 
[89]  RADFORD A , KIM J W , HALLACY C ,et al. Learning transferable visual models from natural language supervision[C]// Proceedings of the International Conference on Machine Learning.[S.l.:s.n.], 2021: 87488763. 
[24]  WANG F Y , XIE Y Q . Sequential algorithms for least square weighted residual methods[C]// Proceedings of the 3rd National Conference on Weighted Residual Methods. Chengdu:Southwest Jiaotong University Press, 1989: 312316. 
[25]  LAGARIS I E , LIKAS A , FOTIADIS D I . Artificial neural networks for solving ordinary and partial differential equations[J]. IEEE Transactions on Neural Networks, 1998,9(5): 9871000. 
[90]  ALAYRAC J B , DONAHUE J , LUC P ,et al. Flamingo:a visual language model for fewshot learning[J]. arXiv preprint, 2022,arXiv:2204.14198. 
[91]  SU B , DU D , YANG Z ,et al. A molecular multimodal foundation model associating molecule graphs with natural language[J]. arXiv preprint, 2022,arXiv:1810.05481. 
[26]  LU L , MENG X H , MAO Z P ,et al. DeepXDE:a deep learning library for solving differential equations[J]. SIAM Review, 2021,63(1): 208228. 
[27]  WINOVICH N , RAMANI K , LIN G . ConvPDEUQ:convolutional neural networks with quantified uncertainty for heterogeneous elliptic partial differential equations on varied domains[J]. Journal of Computational Physics, 2019,394: 263279. 
[92]  XIE Z D , ZHANG Z , CAO Y ,et al. SimMIM:a simple framework for masked image modeling[C]// Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2022: 96439653. 
[93]  王飞跃 . 平行管理:复杂性管理智能的生态科技与智慧管理之DAO[J]. 自动化学报, 2022,48(11): 26552669. 
[28]  LI Z J , MEIDANI K , FARIMANI A . Transformer for partial differential equations' operator learning[J]. arXiv preprint. 2022,arXiv:2205.13671. 
[29]  DONG B , JIANG Q T , SHEN Z W . Image restoration:wavelet frame shrinkage,nonlinear evolution PDEs,and beyond[J]. Multiscale Modeling ＆ Simulation, 2017,15(1): 606660. 
[93]  WANG F Y . Parallel management:the DAO to smart ecological technology for complexity management intelligence[J]. Acta Automatica Sinica, 2022,48(11): 26552669. 
[94]  SHAZEER N , MIRHOSEINI A , MAZIARZ K ,et al. Outrageously large neural networks:the sparselygated mixtureofexperts layer[C]// Proceedings of the International Conference on Learning Representations.[S.l.:s.n.], 2017. 
[30]  LONG Z C , LU Y P , DONG B . PDENet 2.0:learning PDEs from data with a numericsymbolic hybrid deep network[J]. Journal of Computational Physics, 2019,399. 
[31]  LU L , JIN P Z , PANG G F ,et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators[J]. Nature Machine Intelligence, 2021,3(3): 218229. 
[32]  WANG S F , WANG H W , PERDIKARIS P . Improved architectures and training algorithms for deep operator networks[J]. Journal of Scientific Computing, 2022,92(2): 142. 
[33]  HAN J , JENTZEN A , E W . Solving highdimensional partial differential equations using deep learning[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018,115(34): 85058510. 
[34]  SIRIGNANO J , SPILIOPOULOS K . DGM:a deep learning algorithm for solving partial differential equations[J]. Journal of Computational Physics, 2018,375: 13391364. 
[35]  CHEN Z , CHURCHILL V , WU K L ,et al. Deep neural network modeling of unknown partial differential equations in nodal space[J]. Journal of Computational Physics, 2022,449. 
[36]  ZHA W S , ZHANG W , LI D L ,et al. Convolutionbased modelsolving method for threedimensional,unsteady,partial differential equations[J]. Neural Computation, 2022,34(2): 518540. 
[37]  MEADE A J , FERNANDEZ A A . Solution of nonlinear ordinary differential equations by feedforward neural networks[J]. Mathematical and Computer Modelling, 1994,20(9): 1944. 
[38]  VAN MILLIGEN B P , TRIBALDOS V , JIMéNEZ J A , . Neural network differential equation and plasma equilibrium solver[J]. Physical Review Letters, 1995,75(20): 35943597. 
[39]  MAIDUY N , TRANCONG T , . Meshfree radial basis function network methods with domain decomposition for approximation of functions and numerical solution of Poisson’s equations[J]. Engineering Analysis with Boundary Elements, 2002,26(2): 133156. 
[40]  REYNALDI A , LUKAS S , MARGARETHA H . Backpropagation and levenbergmarquardt algorithm for training finite element neural network[C]// Proceedings of 2012 6th UKSim/AMSS European Symposium on Computer Modeling and Simulation. Piscataway:IEEE Press, 2012: 8994. 
[41]  JUMPER J , EVANS R , PRITZEL A ,et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021,596(7873): 583589. 
[42]  RAISSI M , KARNIADAKIS G E . Hidden physics models:machine learning of nonlinear partial differential equations[J]. Journal of Computational Physics, 2018,357: 125141. 
[43]  BARSINAI Y , HOYER S , HICKEY J ,et al. Learning datadriven discretizations for partial differential equations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019,116(31): 1534415349. 
[44]  PANG G F , LU L , KARNIADAKIS G E . fPINNs:fractional physicsinformed neural networks[J]. SIAM Journal on Scientific Computing, 2019,41(4): A2603A2626. 
[45]  GAO H , SUN L N , WANG J X . PhyGeoNet:physicsinformed geometryadaptive convolutional neural networks for solving parameterized steadystate PDEs on irregular domain[J]. Journal of Computational Physics, 2021,428. 
[46]  ZHU Y H , ZABARAS N , KOUTSOURELAKIS PS ,et al. Physicsconstrained deep learning for highdimensional surrogate modeling and uncertainty quantification without labeled data[J]. Journal of Computational Physics, 2019,394: 5681. 
[47]  SUN L N , GAO H , PAN S W ,et al. Surrogate modeling for fluid flows based on physicsconstrained deep learning without simulation data[J]. Computer Methods in Applied Mechanics and Engineering, 2020,361. 
[48]  MENG X H , LI Z , ZHANG D K ,et al. PPINN:parareal physicsinformed neural network for timedependent PDEs[J]. Computer Methods in Applied Mechanics and Engineering, 2020,370. 
[49]  YANG L , MENG X H , KARNIADAKIS G E . BPINNs:Bayesian physicsinformed neural networks for forward and inverse PDE problems with noisy data[J]. Journal of Computational Physics, 2021,425. 
[50]  WANG Y Z , SUN H , SUN G Z . DSPPIGAN:a precisionconsistency machine learning algorithm for solving partial differential equations[C]// Proceedings of 2021 13th International Conference on Machine Learning and Computing.[S.l.:s.n.], 2021: 2126. 
[51]  WANG S , WANG H , PERDIKARIS P . Learning the solution operator of parametric partial differential equations with physicsinformed DeepONets[J]. Science Advances, 2021,7(40). 
[52]  PASZKE A , GROSS S , MASSA F ,et al. Pytorch:an imperative style,highperformance deep learning library[C]// Proceedings of Advances in Neural Information Processing Systems.[S.l.:s.n.], 2019. 
[53]  ABADI M , AGARWAL A , BARHAM P ,et al. Tensorflow:largescale machine learning on heterogeneous distributed systems[J]. arXiv preprint, 2015,arXiv:1603.04467. 
[54]  王昀卓 . 求解偏微分方程的神经网络方法[D]. 合肥:中国科学技术大学, 2021. 
WANG Y Z . Neural network for solving partial differential equations[D]. Hefei:University of Science and Technology of China, 2021.  
[55]  HAN J H , NICA M , STINCHCOMBE A R . A derivativefree method for solving elliptic partial differential equations with deep neural networks[J]. Journal of Computational Physics, 2020,419. 
[56]  OSORIO J D , WANG Z , KARNIADAKIS G ,et al. Forecasting solarthermal systems performance under transient operation using a datadriven machine learning approach based on the deep operator network architecture[J]. Energy Conversion and Management, 2022,252. 
[95]  CHENG X , LU J , WANG F Y . Deep learning meets optimal latticesfor continuous traffic flow prediction[J]. International Journal of Intelligent Control and Systems, 2022,2(1): 712. 
[57]  FRANKLIN T S , SOUZA L S , FONTES R M ,et al. A physicsinformed neural networks (PINN) oriented approach to flow metering in oil wells:an ESP lifted oil well system as a case study[J]. Digital Chemical Engineering, 2022,5. 
[58]  SHI H J , MENG M Q H . Deep koopman operator with control for nonlinear systems[J]. IEEE Robotics and Automation Letters, 2022,7(3): 77007707. 
[59]  张子龙, 潘秋景, 仉文岗 ,等. 基于物理信息神经网络的盾构隧道诱发地表沉降预测[J]. 工程力学, 2022,39: 114. 
ZHANG Z L , PAN Q J , ZHANG W G ,et al. Prediction of surface settlements induced by shield tunnelling using physicsinformed neural networks[J]. Engineering Mechanics, 2022,39: 114.  
[60]  万鹏, 李迎光, 华家玘 ,等. 基于元学习和 PINN 的变工况刀具磨损精确预测方法[J]. 南京航空航天大学学报, 2022,54(3): 387396. 
WAN P , LI Y G , HUA J Q ,et al. Accurate prediction method of tool wear under varying cutting conditions based on meta learning and PINN[J]. Journal of Nanjing University of Aeronautics ＆ Astronautics, 2022,54(3): 387396. 
[1]  Zhe HUANG, Yongcai WANG, Deying LI. A survey of 3D object detection algorithms [J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(1): 731. 
[2]  Xinhuan LUO, Yixuan WANG, Wei LI, Xi CHEN. Application of Fit CutMix data augmentation algorithm based on saliency information in medical images [J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(1): 5868. 
[3]  Zhouyu GU, Yuecheng YU, Tiantian Zhe. RapiderYOLOX: lightweight object detection network with high precision [J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(1): 92103. 
[4]  Junhuan ZHANG, Zhengyi ZHU, Kewei CAI. Curriculum design for artificial intelligence and quantitative trading [J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(1): 104112. 
[5]  Xiaofeng CONG, Jie GUI, Jun ZHANG. Underwater image enhancement network based on visual Transformer with multiple loss functions fusion [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 522532. 
[6]  Jun ZHANG, Peidong XU, Siyuan CHEN, Tianlu GAO, Yuxin DAI, Ke ZHANG, Hang ZHAO, Jiemai GAO, Yuyang BAI, Jinxing LI, Haoran ZHANG, Xiang LI, Jiuxiang CHEN. A hybrid physicsdataknowledge driven approach for humanmachine hybridaugmented intelligencebased system management and control [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 571583. 
[7]  Yan CHEN, Xueqin LUO, Wei LIANG, Yongfang XIE. Depression recognition based on emotional information fused with attentional mechanism [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 600609. 
[8]  Yongqiang ZHANG, Meilin SONG, Tianhu LIU, Menghua MAN. Research on three frame difference gesture recognition method based on mixed bone features [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 592599. 
[9]  Qiang WU, Xueting JI, Linyuan LYU. Artificial intelligence technologies and applications in the metaverse [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(3): 324334. 
[10]  Wenzhu LAI, Dewang CHEN, Zhenfeng HE, Xinguo DENG, CARLO Marano GIUSEPPE. Overview of metro train driving technology development:from manual driving to intelligent unmanned driving [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(3): 335343. 
[11]  Yuanqi QIN, Qingyuan JI, Jun GE, Xingyuan DAI, Yuanyuan CHEN, Xiao WANG. Shortterm traffic state reasoning and precise prediction in urban networks [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(3): 380395. 
[12]  Renwu LI, Lingxiao ZHANG, Lin GAO, Chunpeng LI, Hao JIANG. Categorylevel object pose estimation from depth point cloud [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(2): 246254. 
[13]  Linhui LI, Bin ZHOU, Weiwei REN, Jing LIAN. Review of pedestrian trajectory prediction methods [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(4): 399411. 
[14]  Dongwei HU, Xiaolu FENG. Theoretical framework of brain modelling and highlighted problems [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(4): 412434. 
[15]  Hong SHAO, Mingkun ZHANG, Wencheng CUI. Classification method of dermoscopic image based on hierarchical convolution neural network [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(4): 474481. 
Viewed  
Full text 


Abstract 


