Chinese Journal of Intelligent Science and Technology ›› 2021, Vol. 3 ›› Issue (4): 399-411.doi: 10.11959/j.issn.2096-6652.202140
• Surveys and Prospectives • Previous Articles Next Articles
Linhui LI1,2, Bin ZHOU1, Weiwei REN1, Jing LIAN1,2
Revised:
2020-08-28
Online:
2021-12-15
Published:
2021-12-01
Supported by:
CLC Number:
Linhui LI, Bin ZHOU, Weiwei REN, et al. Review of pedestrian trajectory prediction methods[J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(4): 399-411.
"
方法 | 参考文献序号 | 评价指标(ADE值/FDE值) | |||||
ETH | Hotel | Univ | Zara1 | Zara2 | 平均值 | ||
Linear | [24] | 1.33/2.94 | 0.39/0.72 | 0.82/1.59 | 0.62/1.21 | 0.77/1.48 | 0.79/1.59 |
S-LSTM | [24] | 1.09/2.35 | 0.79/1.76 | 0.67/1.40 | 0.47/1.00 | 0.56/1.17 | 0.72/1.54 |
O-LSTM | [24] | 1.05/2.21 | 0.81/1.68 | 0.71/1.45 | 0.47/1.02 | 0.64/1.25 | 0.74/1.52 |
S-RNN | [45] | 2.72/4.60 | 0.85/1.35 | 1.05/2.20 | 1.60/3.50 | 1.45/3.00 | 1.53/2.93 |
Social-attention | [50] | 3.60/4.70 | 0.79/1.44 | 1.30/2.66 | 0.95/2.05 | 1.00/2.14 | 1.53/3.52 |
S-GAN | [29] | 0.81/1.52 | 0.72/1.61 | 0.60/1.26 | 0.34/0.69 | 0.42/0.84 | 0.58/1.18 |
S-GAN-P | [29] | 0.87/1.62 | 0.67/1.37 | 0.76/1.52 | 0.35/0.68 | 0.42/0.84 | 0.61/1.21 |
Sophie | [32] | 0.70/1.43 | 0.76/1.67 | 0.54/1.24 | 0.30/0.63 | 0.38/0.78 | 0.54/1.15 |
Social-ways | [30] | 0.39/0.64 | 0.39/0.66 | 0.55/1.31 | 0.44/0.64 | 0.51/0.92 | 0.46/0.82 |
GAT | [33] | 0.68/1.29 | 0.68/1.40 | 0.57/1.29 | 0.29/0.60 | 0.37/0.75 | 0.52/1.07 |
STGAT | [51] | 0.70/1.35 | 0.37/0.67 | 0.59/1.23 | 0.35/0.69 | 0.31/0.64 | 0.47/0.92 |
Social-BiGAT | [33] | 0.69/1.29 | 0.49/1.01 | 0.55/1.32 | 0.30/0.62 | 0.36/0.75 | 0.48/1.00 |
NEXT | [36] | 0.73/1.65 | 0.30/0.59 | 0.60/1.27 | 0.38/0.81 | 0.31/0.68 | 0.46/1.00 |
TPNet-20 | [37] | 0.84/1.73 | 0.24/0.46 | 0.42/0.94 | 0.33/0.75 | 0.26/0.60 | 0.42/0.90 |
Social-STGCNN | [46] | 0.64/1.11 | 0.79/0.85 | 0.44/0.79 | 0.34/0.53 | 0.30/0.48 | 0.44/0.75 |
[1] | RUDENKO A , PALMIERI L , HERMAN M ,et al. Human motion trajectory prediction:a survey[J]. The International Journal of Robotics Research, 2020(1):027836492091744. |
[2] | DAI M M , WANG J X , YIN G D ,et al. Dynamic output-feedback robust control for vehicle path tracking considering different human drivers’ characteristics[C]// Proceedings of the 36th Chinese Control Conference. Piscataway:IEEE Press, 2017: 9407-9412. |
[3] | MOUSSAID M , PEROZO N , GARNIER S ,et al. The walking behaviour of pedestrian social groups and its impact on crowd dynamics[J]. PLoS ONE, 2010,5(4): e10047. |
[4] | LEFEVRE S , VASQUEZ D , LAUGIER C . A survey on motionprediction and risk assessment for intelligent vehicles[J]. Robomech Journal, 2014,1(1): 1-14. |
[5] | KELLER C G , GAVRILA D M . Will the pedestrian cross? A study onpedestrian path prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2014,15(2): 494-506. |
[6] | SCHNEIDER N , GAVRILA D M . Pedestrian path prediction with recursive Bayesian filters:a comparative study[C]// Proceedings of the 35th German Conference on Pattern Recognition. Berlin:Springer Press, 2013: 174-183. |
[7] | PAVLOVIC V , REHG J M , MACCORMICK J . Learning switching linear models of human motion[C]// Proceeding of the Conference and Workshop on Neural Information Processing Systems. New York:Curran Associates Press, 2000: 981-987. |
[8] | FOX E B , SUDDERTH E B , JORDAN M ,et al. Bayesian nonparametric inference of switching dynamic linear models[J]. IEEE Transactions on Signal Processing, 2011,59(4): 1569-1585. |
[9] | KOOIJ J F P , SCHNEIDER N , FLOHR F ,et al. Context-based pedestrian path prediction[C]// Proceedings of the 13th European Conference on Computer Vision. Berlin:Springer Press, 2014: 618-633. |
[10] | HELBING D , MOLNAR P . Social force model for pedestrian dynamics[J]. Physical Review E, 1995,51(5): 4282-4286. |
[11] | BAHDANAU D , CHO K , BENGIO Y . Neural machine translation by jointly learning to align and translate[J]. Computer Science, 2014. |
[12] | ALAHI A , RAMANATHAN V , LI F F . Socially-aware large-scale crowd forecasting[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2014: 2211-2218. |
[13] | YI S , LI H S , WANG X G . Understanding pedestrian behaviors from stationary crowd groups[C]// Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2015: 3488-3496. |
[14] | GOLI S A , FAR B H , FAPOJUWO A O . Vehicle trajectory prediction with Gaussian process regression in connected vehicle environment[C]// Proceedings of 2018 IEEE Intelligent Vehicles Symposium. Piscataway:IEEE Press, 2018: 550-555. |
[15] | ELLIS D , SOMMERLADE E , REID I . Modelling pedestrian trajectory patterns with Gaussian processes[C]// Proceedings of 2009 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2009: 1229-1234. |
[16] | RASMUSSEN C E , WILLIAMS C K I . Gaussian processes for machine learning[M]. Cambridge: MIT Press, 2005. |
[17] | HOCHREITER S , SCHMIDHUBER J . Long short-term memory[J]. Neural Computation, 1997,9(8): 1735-1780. |
[18] | CHUNG J Y , GULCEHRE C , CHO K ,et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. Eprint Arxiv, 2014. |
[19] | GRAVES A , JAITLY N . Towards end-to-end speech recognition with recurrent neural networks[C]// Proceedings of the 31st International Conference on Machine Learning. New York:ACM Press, 2014: 1764-1772. |
[20] | CHOROWSKI J , BAHDANAU D , CHO K ,et al. End-to-end continuous speech recognition using attention-based Recurrent NN:first results[J]. arXiv preprint,2014,arXiv:1412. 1602. |
[21] | DONAHUE J , HENDRICKS L A , GUADARRAMA S ,et al. Long-term recurrent convolutional networks for visual recognition and description[C]// Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2015: 2625-2634. |
[22] | WU H , CHEN Z Y , SUN W W ,et al. Modeling trajectories with recurrent neural networks[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. Menlo Park:AAAI Press, 2017: 3083-3090. |
[23] | KARATZOLOU A , JABLONSKI A , BEIGL M . A Seq2Seq learning approach for modeling semantic trajectories and predicting the next location[C]// Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York:ACM Press, 2018: 528-531. |
[24] | ALAHI A , GOEL K , RAMANATHAN V ,et al. Social LSTM:human trajectory prediction in crowded spaces[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016: 961-971. |
[25] | KITANI K M , ZIEBART B D , BAGNELL J A ,et al. Activity forecasting[C]// Proceedings of the 12th European Conference on Computer Vision. Berlin:Springer Press, 2012: 201-214. |
[26] | XUE H , HUYNH D Q , REYNOLDS M . SS-LSTM:a hierarchical LSTM model for pedestrian trajectory prediction[C]// Proceedings of 2018 IEEE Workshop on Applications of Computer Vision. Piscataway:IEEE Press, 2018: 1186-1194. |
[27] | GOODFELLOW I J , POUGET-ABADIE J ,, MIRZA M , et al . Generative adversarial nets[C]// Proceedings of the Conference and Workshop on Neural Information Processing Systems. New York:Curran Associates Press, 2014: 2672-2680. |
[28] | KIPF T N , WELLING M . Variational graph auto-encoders[J]. arXiv preprint,2016,arXiv:1611.07308. |
[29] | GUPTA A , JOHNSON J , LI F F ,et al. Social GAN:socially acceptable trajectories with generative adversarial networks[C]// Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 2255-2264. |
[30] | AMIRIAN J , HAYET J B , PETTRE J . Social ways:learning multi-modal distributions of pedestrian trajectories with GANs[J]. arXiv preprint,2019,arXiv:1904.09507. |
[31] | VARSHNEYA D , SRINIVASARAGHAVAN G . Human trajectory prediction using spatially aware deep attention models[J]. arXiv preprint,2017,arXiv:1705.09436. |
[32] | SADEGHIAN A , KOSARAJU V , SADEGHIAN A ,et al. Sophie:an attentive GAN for predicting paths compliant to social and physical constraints[C]// Proceedings of 2019 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2019: 1349-1358. |
[33] | KOSARAJU V , SADEGHIAN A , MARTIN-MARTIN R ,et al. Social-BiGAT:multimodal trajectory forecasting using bicycle-GAN and graph attention networks[C]// Proceedings of the Conference and Workshop on Neural Information Processing Systems. New York:Curran Associates Press, 2019: 137-146. |
[34] | CHENG H , YANG W L M Y , SESTER M ,et al. Context conditional variational autoencoder for predicting multi-path trajectories in mixed traffic[J]. arXiv preprint,2020,arXiv:2002.05966. |
[35] | YANG B , YAN G , WANG P ,et al. TPPO:a novel trajectory predictor with pseudo oracle[J]. arXiv preprint, 2020. |
[36] | LIANG J W , JIANG L , NIEBLES J C ,et al. Peeking into the future:predicting future person activities and locations in videos[C]// Proceedings of 2019 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2019: 5725-5734. |
[37] | SUN J H , JIANG Q H , LU C W . Recursive social behavior graph for trajectory prediction[J]. arXiv preprint,2020,arXiv:2004.10402. |
[38] | LI G H , MULLER M , QIAN G C ,et al. DeepGCNs:can GCNs go as deep as CNNs?[C]// Proceedings of 2019 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2019: 9267-9276. |
[39] | KIPF T N , WELLING M . Semi-supervised classification with graph convolutional networks[J]. arXiv preprint,2016,arXiv:1609.02907. |
[40] | SCHOLKOPF B , TSUDA K , VERT J ,et al. Kernel methods in computational biology[M]. Cambridge: MIT Press, 2004. |
[41] | SCHLICHTKRULL M , KIPF T N , BLOEM P ,et al. Modeling relational data with graph convolutional networks[C]// Proceedings of the European Semantic Web Conference. Berlin:Springer Press, 2018: 593-607. |
[42] | BERG R V D , KIPF T N , WELLING M . Graph convolutional matrix completion[J]. arXiv preprint,2017,arXiv:1706.02263. |
[43] | ZHANG L D , SHE Q , GUO P . Stochastic trajectory prediction with social graph network[J]. arXiv preprint,2019,arXiv:1907.10233. |
[44] | YAN S J , XIONG Y J , LIN D H ,et al. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]// Proceedings of the National Conference on Artificial Intelligence. Menlo Park:AAAI Press, 2018: 7444-7452. |
[45] | HADDAD S , WU M Q , WEI H ,et al. Situation-aware pedestrian trajectory prediction with spatio-temporal attention model[J]. arXiv preprint,2019,arXiv:1902.05437. |
[46] | MOHAMED A , QIAN K , ELHOSEINY M ,et al. Social-STGCNN:a social spatio-temporal graph convolutional neural network for human trajectory prediction[J]. arXiv preprint,2020,arXiv:2002.11927. |
[47] | PELLEGRINI S , ESS A , GOOL L V . Improving data association by joint modeling of pedestrian trajectories and groupings[C]// Proceedings of the 11th European Conference on Computer Vision. Berlin:Springer Press, 2010: 452-465. |
[48] | LERNER A , CHRYSANTHOU Y , LISCHINSKI D . Crowds by example[J]. Computer Graphics Forum, 2007,26(3): 655-664. |
[49] | ROBICQUET A , SADEGHIAN A , ALAHI A ,et al. Learning social etiquette:human trajectory prediction in crowded scenes[C]// Proceedings of the 14th European Conference on Computer Vision. Berlin:Springer Press, 2016: 549-565. |
[50] | VEMULA A , MUELLING K , OH J . Social attention:modeling attention in human crowds[C]// Proceedings of 2018 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2018: 4601-4607. |
[51] | HUANG Y F , BI H K , LI Z X ,et al. STGAT:Modeling spatial-temporal interactions for human trajectory prediction[C]// Proceedings of 2019 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2019: 6272-6281. |
[1] | Zhe HUANG, Yongcai WANG, Deying LI. A survey of 3D object detection algorithms [J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(1): 7-31. |
[2] | Jingwei LU, Xiang CHENG, Fei-Yue WANG. Artificial intelligence and deep learning methods for solving differential equations: the state of the art and prospects [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 461-476. |
[3] | Jun ZHANG, Peidong XU, Siyuan CHEN, Tianlu GAO, Yuxin DAI, Ke ZHANG, Hang ZHAO, Jiemai GAO, Yuyang BAI, Jinxing LI, Haoran ZHANG, Xiang LI, Jiuxiang CHEN. A hybrid physics-data-knowledge driven approach for human-machine hybrid-augmented intelligence-based system management and control [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 571-583. |
[4] | Yan CHEN, Xueqin LUO, Wei LIANG, Yongfang XIE. Depression recognition based on emotional information fused with attentional mechanism [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 600-609. |
[5] | Renwu LI, Lingxiao ZHANG, Lin GAO, Chunpeng LI, Hao JIANG. Category-level object pose estimation from depth point cloud [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(2): 246-254. |
[6] | Ying LI, Long CHEN, Zhaohong HUANG, Yang SUN, Guorong CAI. Plant leaf detection technology based on multi-scale CNN feature fusion [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(3): 304-311. |
[7] | Qing TIAN, Rong HU, Zuoyong LI, Yuanzheng CAI, Zhaochai YU. Insulator detection based on SE-YOLOv5s [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(3): 312-321. |
[8] | Wen LIU, Kunlin HU, Yan LI, Zhao LIU. A review of prediction methods for moving target trajectories [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(2): 149-160. |
[9] | Yang ZHANG, Yue HU, Dongrong XIN. A deep learning short-term traffic flow prediction method considering spatial-temporal association [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(2): 172-178. |
[10] | Dongjun LIU, Yuhan WANG, Wenfen LING, Yong PENG, Wanzeng KONG. Emotion recognition based on brain and machine collaborative intelligence [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(1): 65-75. |
[11] | Liang ZHAO, Zhifeng XIE, Kunpeng ZHANG, Yuqing ZHENG, Yuankun FU. Modeling signal propagation in wireless network:an interval type-2 fuzzy ensemble deep learning approach [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 401-411. |
[12] | Sijia TIAN,Qiang GU,Rong HU,Ruige LI,Dingxin HE. A robot sorting method based on deep learning [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(3): 268-274. |
[13] | Fei-Yue WANG,Dongpu CAO,Qinglai WEI. Reinforcement learning:toward action-knowledge merged intelligent mechanisms and algorithms [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(2): 101-106. |
[14] | Xiaofeng YUAN,Yalin WANG,Chunhua YANG,Weihua GUI. The application of deep learning in data-driven modeling of process industries [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(2): 107-115. |
[15] | Kai LIU, Yidong LI, Weipeng LIN. A survey on vehicle re-identification [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(1): 10-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|