大数据 ›› 2019, Vol. 5 ›› Issue (2): 53-63.doi: 10.11959/j.issn.2096-0271.2019013

所属专题: 边缘计算

• 专题:边缘计算 • 上一篇    下一篇

边缘智能:边缘计算与人工智能融合的新范式

周知,于帅,陈旭()   

  1. 中山大学数据科学与计算机学院,广东 广州 510006
  • 出版日期:2019-03-15 发布日期:2019-04-04
  • 作者简介:周知(1993- ),男,中山大学数据科学与计算机学院特聘研究员,主要研究方向为云计算、边缘计算和分布式系统。|于帅(1986- ),男,博士,中山大学数据科学与计算机学院在站博士后,主要研究方向为无线通信、移动计算、机器学习等。|陈旭(1986- ),男,中山大学数据科学与计算机学院教授、博士生导师,主要研究方向为边缘计算、边缘智能、智能物联网等。
  • 基金资助:
    国家重点研发计划基金资助项目(2017YFB1001703);国家自然科学基金资助项目(U1711265);国家自然科学基金资助项目(61802449);广东省引进创新创业团队基金资助项目(2017ZT07X355);广东省自然科学基金资助项目(2018A030313032)

Edge intelligence:a new nexus of edge computing and artificial intelligence

Zhi ZHOU,Shuai YU,Xu CHEN()   

  1. School of Data and Computer Science,Sun Yat-sen University,Guangzhou 510006,China
  • Online:2019-03-15 Published:2019-04-04
  • Supported by:
    National Key Research and Development Program of China(2017YFB1001703);The National Natural Science Foundation of China(U1711265);The National Natural Science Foundation of China(61802449);Program for Guangdong Introducing Innovative and Entrepreneurial Teams(2017ZT07X355);Guangdong Natural Science Funds(2018A030313032)

摘要:

边缘计算与人工智能这两种高速发展的新技术之间存在着彼此赋能的巨大潜力。通过3个研究案例,展示协同边缘计算和人工智能这两种技术如何促进各自的进一步发展。从边缘计算赋能人工智能的维度,针对深度学习模型在网络边缘侧的部署,提出了基于边端协同的深度学习按需加速框架,通过协同优化模型分割和模型精简策略,实现时延约束下的高精度模型推理。从人工智能赋能边缘计算的维度,针对边缘计算服务的放置问题,提出了基于在线学习的自适应边缘服务放置机制和基于因子图模型的预测性边缘服务迁移方法。

关键词: 边缘计算, 人工智能, 边缘智能, 服务迁移

Abstract:

Artificial intelligence (AI) and edge computing (EC) represent two of today’s most popular technologies.There is a great potential to coordinate these two emerging techniques to facilitate the further advent of both sides.Through three research cases,the profound benefits were demonstrated when AI and EC synergize.Specifically,from the perspective of EC for AI,to efficiently run deep learning at the network edge,a collaborative and on-demand deep neural network (DNN) co-inference framework with device-edge synergy was proposed.By applying DNN partitioning and right-sizing,it minimizes the inference latency under target accuracy.On the other hand,from the perspective of AI for EC,for the dynamical placement of edge computing services,two methods were proposed:an online-learning based adaptive service migration strategy and a factor graph model driven predictive service migration technique.

Key words: edge computing, artificial intelligence, edge intelligence, service migration

中图分类号: 

No Suggested Reading articles found!