[1] |
LECUN Y , BENGIO Y , HINTON G . Deep learning[J]. Nature, 2015,521(7553):436.
|
[2] |
SHI W S , CAO J , ZHANG Q Y ,et al. Edge computing:vision and challenges[J]. IEEE Internet of Things Journal, 2016,3(5): 637-646.
|
[3] |
IANDOLA F N , MOSKEWICZ M W , ASHRAF K ,et al. SqueezeNet:AlexNetlevel accuracy with 50x fewer parameters and<0.5MB model size[J]. Computer Science, 2016,arXiv:1602.07360.
|
[4] |
WU J X , CONG L , WANG Y H ,et al. Quantized convolutional neural networks for mobile devices[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR),June 26-July 1,2016,Las Vegas,USA. Piscataway:IEEE Press, 2016: 4820-4828.
|
[5] |
HAN S , MAO H Z , DALLY W J . Deep compression:compressing deep neural networks with pruning,trained quantization and Huffman coding[J]. Computer Science, 2015,arXiv:1510.00149.
|
[6] |
KANG Y P , HAUSWALD J , GAO C ,et al. Neurosurgeon:collaborative intelligence between the cloud and mobile edge[C]// The 22nd International Conference on Architectural Support for Programming Languages and Operating Systems,April l8-12,2017,Xi’an,China. New York:ACM Press, 2017: 615-629.
|
[7] |
LANE N , BHATTACHARYA S , MATHUR A ,et al. DXTK:enabling resource-efficient deep learning on mobile and embedded devices with the DeepX toolkit[C]// The 8th EAI International Conference on Mobile Computing,Applications and Services,November 30-December 1,2016,Cambridge,UK. New York:ACM Press, 2017: 98-107.
|
[8] |
TEERAPITTAYANON S , MCDANEL B , KUNG H T . BranchyNet:fast inference via early exiting from deep neural networks[J]. Computer Science, 2017,arXiv:1709.01686.
|
[9] |
LI E , ZHOU Z , CHEN X . Edge intelligence:on-demand deep learning model co-inference with device-edge synergy[C]// ACM Workshop on Mobile Edge Communications,August 20,2018,Budapest,Hungary. New York:ACM Press, 2018: 31-36.
|
[10] |
MACH P AND BECVAR Z . Mobile edge computing:a survey on architecture and computation offloading[J]. IEEE Communications Surveys & Tutorials, 2017,3(19): 1628-1656.
|
[11] |
WANG S , XU J , ZHANG N ,et al. A survey on service migration in mobile edge computing[J]. IEEE Access, 2018,6(24): 511-528.
|
[12] |
OUYANG T , LI R , CHEN X ,et al. Adaptive user-managed service placement for mobile edge computing:an online learning approach[C]// IEEE International Conference on Computer Communications,April 28-May 2,2019,Paris,France. Piscataway:IEEE Press, 2019.
|
[13] |
AGRAWAL S , GOYAL N . Thompson sampling for contextual bandits with linear payoffs[C]// The 30th International Conference on International Conference on Machine Learning,June 16-21,2013,Atlanta,USA.[S.l.:s.n. ], 2013: 1220-1228.
|
[14] |
RUSSO D J , ROY B V , KAZEROUNI A ,et al. A tutorial on thompson sampling[J]. Foundations and Trends in Machine Learning, 2018,1(11): 1-96.
|
[15] |
WU Q , CHEN X , ZHOU Z ,et al. Mobile social data learning for user-centric location prediction with application in mobile edge service migration[J]. IEEE Internet of Things Journal, 2019:accepted. 1-96.
|
[16] |
KSCHISCHANG F R , FREY B J , LOELIGER H A . Factor graphs and the sum-product algorithm[J]. IEEE Transactions on Information Theory, 2002,2(47): 498-519.
|