Chinese Journal of Intelligent Science and Technology ›› 2021, Vol. 3 ›› Issue (2): 149-160.doi: 10.11959/j.issn.2096-6652.202115
• Special Topic: Intelligent Transportation Systems and Applications • Previous Articles Next Articles
Wen LIU1,2, Kunlin HU1, Yan LI1, Zhao LIU1,2
Revised:
2021-05-12
Online:
2021-06-15
Published:
2021-06-01
Supported by:
CLC Number:
Wen LIU, Kunlin HU, Yan LI, et al. A review of prediction methods for moving target trajectories[J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(2): 149-160.
"
分类 | 方法类别 | 参考文献 | 优点 | 缺点 |
数据驱动 | 卡尔曼滤波 | [5-10] | 线性,无偏,精度较高 | 依赖原始数据质量,无法长时预测 |
差分自回归移动平均 | [11-16] | 模型简单,应用广泛 | 需要大量数据,精度较低 | |
隐马尔可夫 | [17-20] | 对过程的状态预测效果良好 | 鲁棒性较差,参数设置复杂 | |
高斯混合模型 | [21-27] | 短轨迹预测精度较高 | 易受数据复杂度影响,实用性低 | |
贝叶斯网络 | [28-31] | 高效,易于训练 | 易受先验概率、输入变量影响 | |
神经网络 | [32-36] | 自适应能力强 | 收敛速度慢,存在局部极小化问题 | |
深度学习 | [13,15,37-50] | 准确率高,实时性强 | 模型训练时间较长,可解释性较差 | |
混合模型 | [40,48,51-54] | 精度高,泛化能力强 | 训练时间较长,易过拟合 | |
行为驱动 | 动力学模型 | [37,55-61] | 可解释性强,精度较高 | 依赖理想的环境和状态假设 |
意图识别 | [13,62-67] | 实时性强,方法新颖 | 仅限意图明确的特定场景 |
[1] | 高雅 . 移动对象轨迹数据的位置预测[D]. 南京:南京航空航天大学, 2019. |
GAO Y . Location prediction on moving objects’ trajectory data[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2019. | |
[2] | 仇功达, 何明, 杨杰 ,等. 异常轨迹数据预警与预测关键技术综述[J]. 系统仿真学报, 2017,29(11): 2608-2617. |
QIU G D , HE M , YANG J ,et al. Key technologies of precaution and prediction of abnormal spatial-temporal trajectory:a review of recent advances[J]. Journal of System Simulation, 2017,29(11): 2608-2617. | |
[3] | PERERA L P , FERRARI V , SANTOS F P ,et al. Experimental evaluations on ship autonomous navigation and collision avoidance by intelligent guidance[J]. IEEE Journal of Oceanic Engineering, 2015,40(2): 374-387. |
[4] | 孔玮, 刘云, 李辉 ,等. 基于深度学习的行人轨迹预测方法综述[J]. 控制与决策, 2021:已录用。 |
KONG W , LIU Y , LI H ,et al. A survey of pedestrian trajectory prediction methods based on deep learning[J]. Control and Decision, 2021:accepted. | |
[5] | PREVOST C G , DESBIENS A , GAGNON E . Extended Kalman?lter for state estimation and trajectory prediction of a moving object detected by an unmanned aerial vehicle[C]// Proceedings of the 2007 American Control Conference. Piscataway:IEEE Press, 2007: 1805-1810. |
[6] | BARTH A , FRANKE U . Where will the oncoming vehicle be the next second?[C]// Proceedings of the 2008 IEEE Intelligent Vehicles Symposium. Piscataway:IEEE Press, 2008: 1068-1073. |
[7] | 乔少杰, 韩楠, 朱新文 ,等. 基于卡尔曼滤波的动态轨迹预测算法[J]. 电子学报, 2018,46(2): 418-423. |
QIAO S J , HAN N , ZHU X W ,et al. A dynamic trajectory prediction algorithm based on Kalman filter[J]. Acta Electronica Sinica, 2018,46(2): 418-423. | |
[8] | 邱洪生 . 基于卡尔曼滤波的船舶航行轨迹异常行为预测算法研究[D]. 天津:河北工业大学, 2012. |
QIU H S . Research on forecasting ship sailed track behavioral abnormalities algorithm based on Kalman filter[D]. Tianjin:Hebei University of Technology, 2012. | |
[9] | WANG Z J , NIE Z Q , SHENG G . Dynamic position predicting of underactuated surface vessel with unscented Kalman filter[C]// Proceedings of the 2018 Chinese Automation Congress. Piscataway:IEEE Press, 2018: 4030-4033. |
[10] | VASHISHTHA D , PANDA M . Maximum likelihood multiple model filtering for path prediction in intelligent transportation systems[J]. Procedia Computer Science, 2018,143: 635-644. |
[11] | CARTLIDG E J , GONG S H , BAI R B ,et al. Spatio-temporal prediction of shopping behaviours using taxi trajectory data[C]// Proceedings of the 2018 IEEE 3rd International Conference on Big Data Analysis. Piscataway:IEEE Press, 2018: 112-116. |
[12] | HAMED M M , AL-MASAEID H R , SAID Z M B . Short-term prediction of traf?c volume in urban arterials[J]. Journal of Transportation Engineering, 1995,121(3): 249-254. |
[13] | DING Q Y , WANG X F , ZHANG X Y ,et al. Forecasting traf?c volume with space-time ARIMA model[C]// Proceedings of the Advanced Materials Research.[S.l.:s.n.], 2011: 979-983. |
[14] | 高建, 毛莺池, 李志涛 . 基于高斯混合-时间序列模型的轨迹预测[J]. 计算机应用, 2019,39(8): 2261-2270. |
GAO J , MAO Y C , LI Z T . Trajectory prediction based on Gauss mixture time series model[J]. Journal of Computer Applications, 2019,39(8): 2261-2270. | |
[15] | 任宇翔, 赵建森, 刘卫 ,等. 基于AIS数据和LSTM网络的船舶航行动态预测[J]. 上海海事大学学报, 2019,40(3): 32-37. |
REN Y X , ZHAO J S , LIU W ,et al. Ship navigation behavior prediction based on AIS data and LSTM network[J]. Journal of Shanghai Maritime University, 2019,40(3): 32-37. | |
[16] | 岳聚财 . 基于LSTM-ARIMA的短期航迹预测方法研究及可视化系统开发[D]. 天津:中国民航大学, 2020. |
YUE J C . Research on short-term trajectory prediction method based on LSTM-ARIMA and visualization system development[D]. Tianjin:Civil Aviation University of China, 2020. | |
[17] | MATHEW W , RAPOSO R , MARTINS B . Predicting future locations with hidden Markov models[C]// Proceedings of the 2012 ACM Conference on Ubiquitous Computing. New York:ACM Press, 2012: 911-918. |
[18] | QIAO S J , SHEN D Y , WANG X T ,et al. A self-adaptive parameter selection trajectory prediction approach via hidden Markov models[J]. IEEE Transactions on Intelligent Transportation Systems, 2015,16(1): 284-296. |
[19] | ASAHARA A , MARUYAMA K , SATO A ,et al. Pedestrian-movement prediction based on mixed Markov-chain model[C]// Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York:ACM Press, 2011: 25-33. |
[20] | ZHANG X Y , LIU G , HU C ,et al. Wavelet analysis based hidden Markov model for large ship trajectory prediction[C]// Proceedings of the 2019 Chinese Control Conference. Piscataway:IEEE Press, 2019: 2913-2918. |
[21] | DALSNES B R , HEXEBERG S , FL?TEN A L ,, et al . The neighbor course distribution method with Gaussian mixture models for AIS-based vessel trajectory prediction[C]// Proceedings of the 2018 21st International Conference on Information Fusion. Piscataway:IEEE Press, 2018: 580-587. |
[22] | 乔少杰, 金琨, 韩楠 ,等. 一种基于高斯混合模型的轨迹预测算法[J]. 软件学报, 2015,26(5): 1048-1063. |
QIAO S J , JIN K , HAN N ,et al. Trajectory prediction algorithm based on Gaussian mixture model[J]. Journal of Software, 2015,26(5): 1048-1063. | |
[23] | WIEST J , H?FFKEN M , KREBEL U ,et al. Probabilistic trajectory prediction with Gaussian mixture models[C]// Proceedings of the 2012 IEEE Intelligent Vehicles Symposium. Piscataway:IEEE Press, 2012: 141-146. |
[24] | LIM Q , JOHARI K , TAN U X . Gaussian process auto regression for vehicle center coordinates trajectory prediction[C]// Proceedings of the TENCON 2019-2019 IEEE Region 10 Conference. Piscataway:IEEE Press, 2019: 25-30. |
[25] | 王新立 . 基于GPR模型的船舶自适应轨迹预测及应用研究[D]. 武汉:武汉理工大学, 2019. |
WANG X L . Research on ship adaptive trajectory prediction and application based on GPR model[D]. Wuhan:Wuhan University of Technology, 2019. | |
[26] | 林毅, 张建伟, 武喜萍 ,等. 基于 GMM 的航班轨迹预测算法研究[J]. 工程科学与技术, 2018,50(4): 104-109. |
LIN Y , ZHANG J W , WU X P ,et al. Study on algorithm for flight trajectory prediction based on GMM[J]. Advanced Engineering Sciences, 2018,50(4): 104-109. | |
[27] | 张显炀, 朱晓宇, 林浩申 ,等. 基于高斯混合-变分自编码器的轨迹预测算法[J]. 计算机工程, 2020,46(7): 50-57. |
ZHANG X Y , ZHU X Y , LIN H S ,et al. Trajectory prediction algorithm based on Gaussian mixture-variational autoencoder[J]. Computer Engineering, 2020,46(7): 50-57. | |
[28] | 乔少杰, 彭京, 李天瑞 ,等. 基于 CTBN 的移动对象不确定轨迹预测算法[J]. 电子科技大学学报, 2012,41(5): 759-763. |
QIAO S J , PENG J , LI T R ,et al. Uncertain trajectory prediction of moving objects based on CTBN[J]. Journal of University of Electronic Science and Technology of China, 2012,41(5): 759-763. | |
[29] | 段炼, 胡涛, 朱欣焰 ,等. 顾及时空语义的疑犯位置时空预测[J]. 武汉大学学报·信息科学版, 2019,44(5): 765-770. |
DUAN L , HU T , ZHU X Y ,et al. Spatio-temporal prediction of suspect location by spatio-temporal semantics[J]. Geomatics and Information Science of Wuhan University, 2019,44(5): 765-770. | |
[30] | 王垒, 宋庭新 . 内河航道船舶避碰轨迹规划与预测[J]. 湖北工业大学学报, 2019,34(2): 64-68. |
WANG L , SONG T X . Ship collision trajectory planning and prediction for inland waterway[J]. Journal of Hubei University of Technology, 2019,34(2): 64-68. | |
[31] | 李万高, 赵雪梅, 孙德厂 . 基于改进贝叶斯方法的轨迹预测算法研究[J]. 计算机应用, 2013,33(7): 1960-1963. |
LI W G , ZHAO X M , SUN D C . Prediction of trajectory based on modified Bayesian inference[J]. Journal of Computer Applications, 2013,33(7): 1960-1963. | |
[32] | 徐婷婷, 柳晓鸣, 杨鑫 . 基于 BP神经网络的船舶航迹实时预测[J]. 大连海事大学学报, 2012,38(1): 9-11. |
XU T T , LIU X M , YANG X . BP neural network-based ship track real-time prediction[J]. Journal of Dalian Maritime University, 2012,38(1): 9-11. | |
[33] | 杨淳 . 基于 BP 神经网络的 AUV 航迹预测方法研究[D]. 哈尔滨:哈尔滨工程大学, 2014. |
YANG C . The research on AUV track prediction method based on BP neural network[D]. Harbin:Harbin Engineering University, 2014. | |
[34] | 杨彬, 贺正洪 . 一种 GRNN 神经网络的高超声速飞行器轨迹预测方法[J]. 计算机应用与软件, 2015,32(7): 239-243. |
YANG B , HE Z H . Hypersonic vehicle track prediction based on GRNN[J]. Computer Applications and Software, 2015,32(7): 239-243. | |
[35] | 马国兵, 张楠 . 一种基于神经网络的机动目标轨迹预测方法[J]. 青岛理工大学学报, 2006,27(5): 108-111. |
MA G B , ZHANG N . Method based on neural network in predicting the track of maneuvering target[J]. Journal of Qingdao University of Technology, 2006,27(5): 108-111. | |
[36] | 高天航, 徐力, 靳廉洁 ,等. 考虑航艏向与数据变化差异的船舶轨迹预测[J]. 交通运输系统工程与信息, 2021,21(1): 90-94. |
GAO T H , XU L , JIN L J ,et al. Vessel trajectory prediction considering the difference between heading and data changes[J]. Journal of Transportation Systems Engineering and Information Technology, 2021,21(1): 90-94. | |
[37] | 刘创, 梁军 . 基于注意力机制的车辆运动轨迹预测[J]. 浙江大学学报(工学版), 2020,54(6): 1156-1163. |
LIU C , LIANG J . Vehicle motion trajectory prediction based on attention mechanism[J]. Journal of Zhejiang University (Engineering Science), 2020,54(6): 1156-1163. | |
[38] | GUO X J , ZHU Q . A traf?c ?ow forecasting model based on BP neural network[C]// Proceedings of the 2009 2nd International Conference on Power Electronics and Intelligent Transportation System (PEITS).[S.l.:s.n.], 2009: 311-314. |
[39] | AKIYAMA T , INOKUCHI H . Long term estimation of traf?c demand on urban expressway by neural networks[C]// Proceedings of the 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS). Piscataway:IEEE Press, 2014: 185-189. |
[40] | 刘莹 . 基于深度学习的轨迹预测[D]. 成都:电子科技大学, 2019. |
LIU Y . Trajectory prediction based on deep learning[D]. Chengdu:University of Electronic Science and Technology of China, 2019. | |
[41] | VALSAMIS A , TSERPES K , ZISSIS D ,et al. Employing traditional machine learning algorithms for big data streams analysis:the case of object trajectory prediction[J]. Journal of Systems and Software, 2017,127: 249-257. |
[42] | MIN K , KIM D , PARK J ,et al. RNN-based path prediction of obstacle vehicles with deep ensemble[J]. IEEE Transactions on Vehicular Technology, 2019,68(10): 10252-10256. |
[43] | ALTCHé F , DE LA FORTELLE A , . An LSTM network for highway trajectory prediction[C]// Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems. Piscataway:IEEE Press, 2017: 353-359. |
[44] | XIN L , WANG P , CHAN C Y ,et al. Intention-aware long horizon trajectory prediction of surrounding vehicles using dual LSTM networks[C]// Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems. Piscataway:IEEE Press, 2018: 1441-1446. |
[45] | ALAHI A , GOEL K , RAMANATHAN V ,et al. Social LSTM:human trajectory prediction in crowded spaces[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016: 961-971. |
[46] | 张志远, 倪国新, 徐艳国 . 轨迹预测技术的现状及发展综述[J]. 电子测量技术, 2020,43(13): 111-116. |
ZHANG Z Y , NI G X , XU Y G . Review of the status and development of trajectory prediction technology[J]. Electronic Measurement Technology, 2020,43(13): 111-116. | |
[47] | 谢新连, 陈紫薇, 魏照坤 ,等. 基于极限学习机的船舶航行行为预测[J]. 重庆交通大学学报(自然科学版), 2019,38(8): 7-12,123. |
XIE X L , CHEN Z W , WEI Z K ,et al. Ship navigation behavior prediction based on extreme learning machine[J]. Journal of Chongqing Jiaotong University (Natural Science), 2019,38(8): 7-12,123. | |
[48] | 谭紫阳, 高忠文, 邓宇 . 基于改进极限学习机和深度神经网络融合的车辆轨迹长期预测[J]. 汽车技术, 2020(11): 16-20. |
TAN Z Y , GAO Z W , DENG Y . The long term prediction of vehicle trajectory based on improved extreme learning machine and deep neural network fusion[J]. Automotive Technology, 2020(11): 16-20. | |
[49] | GUPTA A , JOHNSON J , LI F F ,et al. Social GAN:socially acceptable trajectories with generative adversarial networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 2255-2264. |
[50] | SADEGHIAN A , KOSARAJU V , SADEGHIAN A ,et al. SoPhie:an attentive GAN for predicting paths compliant to social and physical constraints[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2019: 1349-1358. |
[51] | 石庆研, 岳聚财, 韩萍 ,等. 基于 LSTM-ARIMA 模型的短期航班飞行轨迹预测[J]. 信号处理, 2019,35(12): 2000-2009. |
SHI Q Y , YUE J C , HAN P ,et al. Short-term flight trajectory prediction based on LSTM-ARIMA model[J]. Journal of Signal Processing, 2019,35(12): 2000-2009. | |
[52] | PECHER P , HUNTER M , FUJIMOTO R . Data-driven vehicle trajectory prediction[C]// Proceedings of the 2016 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation. New York:ACM Press, 2016: 13-22. |
[53] | 张凯 . 基于海量出租车轨迹数据的学习与预测[D]. 西安:长安大学, 2019. |
ZHANG K . Learning and prediction over mass taxi trajectory data[D]. Xi’an:Chang’an University, 2019. | |
[54] | 周于涛, 吴华意, 成洪权 ,等. 结合自注意力机制和结伴行为特征的行人轨迹预测模型[J]. 武汉大学学报·信息科学版, 2020,45(12): 1989-1996. |
ZHOU Y T , WU H Y , CHENG H Q ,et al. Pedestrian trajectory prediction model based on self-attention mechanism and group behavior characteristics[J]. Geomatics and Information Science of Wuhan University, 2020,45(12): 1989-1996. | |
[55] | 关克平, 江靖楠, 吴天裕 ,等. 基于OSG和Bullet的船舶碰撞响应三维仿真[J]. 上海海事大学学报, 2014,35(4): 1-6. |
GUAN K P , JIANG J N , WU T Y ,et al. Three-dimensional simulation on collision response of ships based on OSG and Bullet[J]. Journal of Shanghai Maritime University, 2014,35(4): 1-6. | |
[56] | HOUENOU A , BONNIFAIT P , CHERFAOUI V ,et al. Vehicle trajectory prediction based on motion model and maneuver recognition[C]// Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2013: 4363-4369. |
[57] | HELBING D , MOLNáR P , . Social force model for pedestrian dynamics[J]. Physical Review E, 1995,51(5): 4282. |
[58] | BAHDANAU D , CHO K , BENGIO Y . Neural machine translation by jointly learning to align and translate[J]. Computer Science,arXiv preprint,2014,arXiv:1409.0473. |
[59] | 李琳辉, 周彬, 任威威 ,等. 行人轨迹预测方法综述[J]. 智能科学与技术学报, 2021:已录用. |
LI L H , ZHOU B , REN W W ,et al. Review of pedestrian trajectory prediction methods[J]. Chinese Journal of Intelligent Science and Technology, 2021:accepted. | |
[60] | 张鹏鹏, 房芳, 马旭东 . 基于注意力机制的生成式对抗轨迹预测方法[J]. 工业控制计算机, 2021,34(4): 63-65. |
ZHANG P P , FANG F , MA X D . Pedestrian trajectory prediction method with generative adversarial network based on attention mechanism[J]. Industrial Control Computer, 2021,34(4): 63-65. | |
[61] | 李琳辉, 周彬, 连静 ,等. 基于社会注意力机制的行人轨迹预测方法研究[J]. 通信学报, 2020,41(6): 175-183. |
LI L H , ZHOU B , LIAN J ,et al. Research on pedestrian trajectory prediction method based on social attention mechanism[J]. Journal on Communications, 2020,41(6): 175-183. | |
[62] | 刘璐 . 基于意图识别的骑车人轨迹预测方法研究[D]. 北京:清华大学, 2019. |
LIU L . Intent-based trajectory prediction approach of cyclists[D]. Beijing:Tsinghua University, 2019. | |
[63] | 丁洁云, 党睿娜, 王建强 ,等. 驾驶人换道决策分析及意图识别算法设计[J]. 清华大学学报(自然科学版), 2015,55(7): 769-774. |
DING J Y , DANG R N , WANG J Q ,et al. Driver lane change decision analysis and intention recognition algorithm[J]. Journal of Tsinghua University (Science and Technology), 2015,55(7): 769-774. | |
[64] | HE G , LI X , LYU Y ,et al. Probabilistic intention prediction and trajectory generation based on dynamic Bayesian networks[C]// Proceedings of the 2019 Chinese Automation Congress. Piscataway:IEEE Press, 2019: 2646-2651. |
[65] | 刘志强, 吴雪刚, 倪捷 ,等. 基于HMM和SVM级联算法的驾驶意图识别[J]. 汽车工程, 2018,40(7): 858-864. |
LIU Z Q , WU X G , NI J ,et al. Driving intention recognition based on HMM and SVM cascade algorithm[J]. Automotive Engineering, 2018,40(7): 858-864. | |
[66] | 季学武, 费聪, 何祥坤 ,等. 基于 LSTM 网络的驾驶意图识别及车辆轨迹预测[J]. 中国公路学报, 2019,32(6): 34-42. |
JI X W , FEI C , HE X K ,et al. Intention recognition and trajectory prediction for vehicles using LSTM network[J]. China Journal of Highway and Transport, 2019,32(6): 34-42. | |
[67] | 王畅 . 基于隐形马尔可夫模型的驾驶员意图辨识方法研究[D]. 长春:吉林大学, 2011. |
WANG C . Research on driver intention recognition method based on hidden Markov model[D]. Changchun:Jilin University, 2011. | |
[68] | 郝慎学 . 城市道路交通系统的分布式优化控制策略研究[D]. 济南:山东大学, 2019. |
HAO S X . Research on distributed optimal control strategy of urban road traffic system[D]. Jinan:Shandong University, 2019. | |
[69] | LI S C , LIANG M H , WU X Y ,et al. AIS-based vessel trajectory reconstruction with U-Net convolutional networks[C]// Proceedings of the 2020 IEEE 5th International Conference on Cloud Computing and Big Data Analytics. Piscataway:IEEE Press, 2020. |
[70] | CHEN X Q , LING J , YANG Y S ,et al. Ship trajectory reconstruction from AIS sensory data via data quality control and prediction[J]. Mathematical Problems in Engineering, 2020: 1-9. |
[71] | BOMBERGER N A , RHODES B J , SEIBERT M ,et al. Associative learning of vessel motion patterns for maritime situation awareness[C]// Proceedings of the IEEE 2006 9th International Conference on Information Fusion. Piscataway:IEEE Press, 2006: 1-8. |
[72] | RHODES B J , BOMBERGER N A , ZANDIPOUR M . Probabilistic associative learning of vessel motion patterns at multiple spatial scales for maritime situation awareness[C]// Proceedings of the IEEE 2007 10th International Conference on Information Fusion. Piscataway:IEEE Press, 2007: 1-8. |
[73] | FOSSEN T I . Guidance and control of ocean vehicles[M]. Weinheim: Wiley, 1994: 455-47. |
[74] | 高曙, 刘甜甜, 初秀民 ,等. 船舶异常行为研究进展及发展趋势[J]. 中国航海, 2017,40(2): 38-43. |
GAO S , LIU T T , CHU X M ,et al. Status and research trends on abnormal ship behavior[J]. Navigation of China, 2017,40(2): 38-43. | |
[75] | ZHAO L B , SHI G Y . Maritime anomaly detection using density-based clustering and recurrent neural network[J]. Journal of Navigation, 2019,72(4): 894-916. |
[76] | 葛艳, 王健, 孟友新 ,等. 车辆导航动态路径规划的研究进展[J]. 公路交通科技, 2010,27(11): 113-117. |
GE Y , WANG J , MENG Y X ,et al. Research progress on dynamic route planning of vehicle navigation[J]. Journal of Highway and Transportation Research and Development, 2010,27(11): 113-117. | |
[77] | DE FABRITIIS C , RAGONA R , VALENTI G . Traffic estimation and prediction based on real time floating car data[C]// Proceedings of the 2018 11th International IEEE Conference on Intelligent Transportation Systems. Piscataway:IEEE Press, 2008: 197-203. |
[78] | 许涛 . 基于海量出租车轨迹数据的旅行时间预测[D]. 上海:华东师范大学, 2017. |
XU T . Travel time prediction based on massive taxi trajectory data[D]. Shanghai:East China Normal University, 2017. | |
[79] | 范静宏 . 基于大数据技术的船舶定位导航和航迹预测[J]. 舰船科学技术, 2018,40(14): 31-33. |
FAN J H . Research on ship positioning navigation and track prediction based on big data technology[J]. Ship Science and Technology, 2018,40(14): 31-33. | |
[80] | 应文健 . 自主车导航中提高目标行为预测能力的新方法[J]. 计算机测量与控制, 2012,20(8): 2048-2051. |
YING W J . Improved objects motion predication for autonomous vehicle navigation[J]. Computer Measurement & Control, 2012,20(8): 2048-2051. | |
[81] | DAI J , YANG B , GUO C J ,et al. Personalized route recommendation using big trajectory data[C]// Proceedings of the 2015 IEEE 31st International Conference on Data Engineering. Piscataway:IEEE Press, 2015: 543-554. |
[82] | 温美玲, 路鹏远, 蔡林 ,等. 基于轨迹大数据的交通拥堵评估和预测[J]. 数字制造科学, 2021,19(1): 77-80. |
WEN M L , LU P Y , CAI L ,et al. Traffic congestion assessment and prediction based on trajectory big data[J]. Digital Manufacture Science, 2021,19(1): 77-80. | |
[83] | 易先锋 . 基于车辆轨迹的个性化路径导航与行程时间预测[D]. 广州:华南理工大学, 2018. |
YI X F . Personalized route navigation and travel time prediction based on vehicle trajectories[D]. Guangzhou:South China University of Technology, 2018. |
[1] | Zhe HUANG, Yongcai WANG, Deying LI. A survey of 3D object detection algorithms [J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(1): 7-31. |
[2] | Qinghai MIAO, Yisheng LYU. Parallel transportation systems in era of metaverse [J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(1): 32-40. |
[3] | Junhuan ZHANG, Zhengyi ZHU, Kewei CAI. Curriculum design for artificial intelligence and quantitative trading [J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(1): 104-112. |
[4] | Jingwei LU, Xiang CHENG, Fei-Yue WANG. Artificial intelligence and deep learning methods for solving differential equations: the state of the art and prospects [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 461-476. |
[5] | Jun ZHANG, Peidong XU, Siyuan CHEN, Tianlu GAO, Yuxin DAI, Ke ZHANG, Hang ZHAO, Jiemai GAO, Yuyang BAI, Jinxing LI, Haoran ZHANG, Xiang LI, Jiuxiang CHEN. A hybrid physics-data-knowledge driven approach for human-machine hybrid-augmented intelligence-based system management and control [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 571-583. |
[6] | Yan CHEN, Xueqin LUO, Wei LIANG, Yongfang XIE. Depression recognition based on emotional information fused with attentional mechanism [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 600-609. |
[7] | Qiang WU, Xueting JI, Linyuan LYU. Artificial intelligence technologies and applications in the metaverse [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(3): 324-334. |
[8] | Wenzhu LAI, Dewang CHEN, Zhenfeng HE, Xinguo DENG, CARLO Marano GIUSEPPE. Overview of metro train driving technology development:from manual driving to intelligent unmanned driving [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(3): 335-343. |
[9] | Renwu LI, Lingxiao ZHANG, Lin GAO, Chunpeng LI, Hao JIANG. Category-level object pose estimation from depth point cloud [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(2): 246-254. |
[10] | Yuanwen CHEN, Xiao WANG, Lingxi LI, Fei-Yue WANG. Traffic situational awareness research and development enhanced by social media data: the state of the art and prospects [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(1): 1-13. |
[11] | Linhui LI, Bin ZHOU, Weiwei REN, Jing LIAN. Review of pedestrian trajectory prediction methods [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(4): 399-411. |
[12] | Dongwei HU, Xiaolu FENG. Theoretical framework of brain modelling and highlighted problems [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(4): 412-434. |
[13] | Yaling LI, Linyao YANG, Jun GE, Yuanqi QIN, Xiao WANG. Game 5.0: social cognitionparallel game based on the parallel systems and machine game [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(4): 507-520. |
[14] | Fei-Yue WANG. Parallel philosophy and intelligent technology: dual equations and testing systems for parallel industries and smart societies [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(3): 245-255. |
[15] | Ying LI, Long CHEN, Zhaohong HUANG, Yang SUN, Guorong CAI. Plant leaf detection technology based on multi-scale CNN feature fusion [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(3): 304-311. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|