Chinese Journal of Intelligent Science and Technology ›› 2020, Vol. 2 ›› Issue (2): 107-115.doi: 10.11959/j.issn.2096-6652.202012
• Surveys and Prospectives • Previous Articles Next Articles
Xiaofeng YUAN,Yalin WANG(),Chunhua YANG,Weihua GUI
Revised:
2020-05-13
Online:
2020-06-20
Published:
2020-07-14
Supported by:
CLC Number:
Xiaofeng YUAN, Yalin WANG, Chunhua YANG, et al. The application of deep learning in data-driven modeling of process industries[J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(2): 107-115.
[1] | 张钹 . 人工智能进入后深度学习时代[J]. 智能科学与技术学报, 2019,1(1): 4-6. |
ZHANG B . Artificial intelligence is entering the post deep-learning era[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(1): 4-6. | |
[2] | 刘远平, 宋昱锴, 张小燕 ,等. 基于深度学习的髋关节应力分布算法研究[J]. 智能科学与技术学报, 2019,1(3): 260-268. |
LIU Y P , SONG Y K , ZHANG X Y ,et al. Research on hip joint stress distribution algorithms based on deep learning[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(3): 260-268 | |
[3] | MCCULLOCH W S , PITTS W . A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biophysics, 1943,52(1-2): 99-115. |
[4] | ROSENBLATT F . The perceptron:a probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958,65(6): 386-408. |
[5] | MINSKY M , PAPERT S . Perceptrons an introduction to computational geometry[M]. Cambridg: MIT PressPress, 1969. |
[6] | WERBOS P . Beyond regression:new tools for prediction and analysis in the behavioral sciences[D]. Boston:Harvard University, 1974. |
[7] | RUMMELHART D E , HINTON G E , WILLIAMS R J . Learning internal representations by error propagation[J]. Nature, 1986,323(2): 318-362. |
[8] | CORTES C , WAPNIK V . Support-vector networks[J]. Machine Learning, 1995,20(3): 273-297. |
[9] | HINTON G E , OSINDERO S , THE Y W . A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006,18(7): 1527-1554. |
[10] | KRIZHEVSKY A , SUTSKEVER I , HINTON G . Imagenet classification with deep convolutional neural networks[C]// Advances in Neural Information Processing Systems.[S.l.:s.n]. 2012: 1097-1105. |
[11] | WANG Y L , PAN Z F , YANG C H ,et al. A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network[J]. ISA Transactions, 2020,96: 457-467. |
[12] | SHANG C , YANG F , HUANG D X ,et al. Data-driven soft sensor development based on deep learning technique[J]. Journal of Process Control, 2014,24(3): 223-233. |
[13] | 刘瑞兰, 毛佳敏 . 基于深度置信网络的 4-CBA 软测量建模[J]. 计算机工程与应用, 2017,53(6): 227-230. |
LIU R L , MAO J M . Soft sensor modeling of 4-CBA based on deep belief networks[J]. Computer Engineering and Applications, 2017,53(6): 227-230. | |
[14] | 康岩, 卢慕超, 阎高伟 . 基于 DBN-ELM 的球磨机料位软测量方法研究[J]. 仪表技术与传感器, 2015(4): 73-75,92. |
KANG Y , LU M C , YAN G W . Soft sensor for ball mill fill level based on DBN-ELM model[J]. Instrument Technique and Sensor, 2015(4): 73-75,92. | |
[15] | LIU Y , FAN Y , CHEN J H . Flame images for oxygen content prediction of combustion systems using DBN[J]. Energy & Fuels, 2017,31(8): 8776-8783. |
[16] | YUAN Z , WANG B , LIANG K ,et al. In application of deep belief network in prediction of secondary chemical components of sinter[C]// The 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). Piscataway:IEEE Press, 2018: 2746-2751. |
[17] | ZHANG Z P , ZHAO J S . A deep belief network based fault diagnosis model for complex chemical processes[J]. Computers & Chemical Engineering, 2017,107: 395-407. |
[18] | 赵辉, 赵德涛, 岳有军 ,等. 基于深度置信网络的高炉炉况故障分类方法的研究[J]. 铸造技术, 2018,39(5): 1028-1032. |
ZHAO H , ZHAO D T , YUE Y J ,et al. Research on fault classification of blast furnace condition based on deep belief network[J]. Foundry Technology, 2018,39(5): 1028-1032. | |
[19] | 葛强强 . 基于深度置信网络的数据驱动故障诊断方法研究[D]. 哈尔滨:哈尔滨工业大学, 2016. |
GE Q Q . Research on data driven fault diagnosis method based on deep belief network[D]. Harbin:Harbin Institute of Technology, 2016. | |
[20] | YUAN X F , GU Y J , WANG Y L ,et al. A deep supervised learning framework for data-driven soft sensor modeling of industrial processes[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019: 1-10. |
[21] | YUAN X F , HUANG B , WANG Y L ,et al. Deep learning based feature representation and its application for soft sensor modeling with variable-wise weighted SAE[J]. IEEE Transactions on Industrial Informatics, 2018,14(7): 3235-3243. |
[22] | YUAN X F , OU C , WANG Y L ,et al. Deep quality-related feature extraction for soft sensing modeling:a deep learning approach with hybrid VW-SAE[J]. Neurocomputing, 2019 |
[23] | YUAN X F , ZHOU J , HUANG B ,et al. Hierarchical quality-relevant feature representation for soft sensor modeling:a novel deep learning strategy[J]. IEEE Transactions on Industrial Informatics, 2020,16(6): 3721-3730. |
[24] | 邱禹, 刘乙奇, 吴菁 ,等. 基于深层神经网络的多输出自适应软测量建模[J]. 化工学报, 2018,69(7): 3101-3113. |
QIU Y , LIU Y Q , WU J ,et al. A self-adaptive multi-output soft sensor modeling based on deep neural network[J]. CIESC Jorunal, 2018,69(7): 3101-3113. | |
[25] | KONG D H , YAN X F . Industrial process deep feature representation by regularization strategy autoencoders for process monitoring[J]. Measurement Science Technology, 2019,31(2):025104. |
[26] | YAN S F , YAN X F . Design teacher and supervised dual stacked auto-encoders for quality-relevant fault detection in industrial process[J]. Applied Soft Computing, 2019,81:105526. |
[27] | YAN S F , YUAN X F . Using labeled autoencoder to supervise neural network combined with k-nearest neighbor for visual industrial process monitoring[J]. Industrial & Engineering Chemistry Research, 2019,58(23): 9952-9958. |
[28] | 蒋立 . 基于自编码器模型的非线性过程监测[D]. 杭州:浙江大学, 2018. |
JIANG L . Nonlinear process monitoring based on auto-encoder model[D]. Hangzhou:Zhejiang University, 2018. | |
[29] | ZHANG T S , WANG W , YE H ,et al. Fault detection for ironmaking process based on stacked denoising autoencoders[C]// The 2016 American Control Conference (ACC).[S.l.:s.n]. 2016. |
[30] | ZHANG Z H , JIANG T , LI S H ,et al. Automated feature learning for nonlinear process monitoring,an approach using stacked denoising autoencoder and k-nearest neighbor rule[J]. Journal of Process Control, 2018,64: 49-61. |
[31] | LECUN Y , BOTTOU L , BENGIO Y ,et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11): 2278-2324. |
[32] | HORN Z C , AURET L , MCCOY J T ,et al. Performance of convolutional neural networks for feature extraction in froth flotation sensing[J]. IFAC Papersonline, 2017,50(2): 13-18. |
[33] | 易令, 吕忠元, 丁进良 ,等. 面向原油总氢物性预测的数据扩增预处理方法[J]. 控制与决策, 2018,33(12): 2153-2160. |
YI L , LYU Z Y , DING J L ,et al. Data pretreatment approach for crude oil hydrogen properties prediction[J]. Control and Decision, 2018,33(12): 2153-2160. | |
[34] | WANG K C , SHANG C , LIU L ,et al. Dynamic soft sensor development based on convolutional neural networks[J]. Industrial & Engineering Chemistry Research, 2019,58(26): 11521-11531. |
[35] | WU H , ZHAO J S . Deep convolutional neural network model based chemical process fault diagnosis[J]. Computers & Chemical Engineering, 2018:115. |
[36] | 苏堪裂 . 基于卷积神经网络的化工过程故障诊断研究[D]. 广州:华南理工大学, 2019. |
SU K L . Fault diagnosis of chemical process based on convolutional neural network research[D]. Guangzhou:South China University of Technology, 2019. | |
[37] | LEE K B , CHEON S , KIM C O . A convolutional neural network for fault classification and diagnosis in semiconductor manufacturing processes[J]. IEEE Transactions on Semiconductor Manufacturing, 2017,30(2): 135-142. |
[38] | BENGIO Y , SIMARD P , FRASCONI P . Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994,5(2): 157-166. |
[39] | HOCHREITER S , SCHMIDHUBER J . Long short-term memory[J]. Neural Computation, 1997,9(8): 1735-1780. |
[40] | CHO K , WAN MERRIENBOER B , GULCEHRE C ,et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation[C]// The 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).[S.l.:s.n. ], 2014: 1724-1734. |
[41] | SU H T , MCAVOY T J , WERBOS P . Long-term predictions of chemical processes using recurrent neural networks:a parallel training approach[J]. Industrial Engineering Chemistry Research, 1992,31(5): 1338-1352. |
[42] | CHEN L Z , NGUANG S K , LI X M ,et al. Soft sensors for on-line biomass measurements[J]. Bioprocess and Biosystems Engineering, 2004,26(3): 191-195. |
[43] | ZHAO J , LIU Q L , WANG W ,et al. Hybrid neural prediction and optimized adjustment for coke oven gas system in steel industry[J]. IEEE Transactions on Neural Networks & Learning Systems, 2012,23(3): 439-450. |
[44] | FU J G , XIAO H , WANG T ,et al. Prediction model of desulfurization efficiency of coal-fired power plants based on long short-term memory neural network[C]// The 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData).[S.l.:s.n. ], 2019: 40-45. |
[45] | HAN Y M , ZHOU R D , GENG Z Q ,et al. Production prediction modeling of industrial processes based on Bi-LSTM[C]// The 34rd Youth Academic Annual Conference of Chinese Association of Automation.[S.l.:s.n. ], 2019: 285-289. |
[46] | YUAN X F , LI L , WANG Y L . Nonlinear dynamic soft sensor modeling with supervised long short-term memory network[J]. IEEE Transactions on Industrial Informatics, 2020,16(5): 3168-3176. |
[47] | YUAN X F , LI L , WANG Y L ,et al. Deep learning for quality prediction of nonlinear dynamic process with variable attention-based long short-term memory network[J]. The Canadian Journal of Chemical Engineering, 2019 |
[48] | WANG K , GOPALUNI B , CHEN J H ,et al. Deep learning of complex batch process data and its application on quality prediction[J]. IEEE Transactions on Industrial Informatics, 2018:1. |
[49] | SUN Q Q , GE Z Q . Probabilistic sequential network for deep learning of complex process data and soft sensor application[J]. IEEE Transactions on Industrial Informatics, 2018,15(5): 2700-2709. |
[50] | KATARIA G , SINGH K . Recurrent neural network based soft sensor for monitoring and controlling a reactive distillation column[J]. Chemical Product and Process Modeling, 2017,13(3). |
[1] | Zhe HUANG, Yongcai WANG, Deying LI. A survey of 3D object detection algorithms [J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(1): 7-31. |
[2] | Jingwei LU, Xiang CHENG, Fei-Yue WANG. Artificial intelligence and deep learning methods for solving differential equations: the state of the art and prospects [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 461-476. |
[3] | Jun ZHANG, Peidong XU, Siyuan CHEN, Tianlu GAO, Yuxin DAI, Ke ZHANG, Hang ZHAO, Jiemai GAO, Yuyang BAI, Jinxing LI, Haoran ZHANG, Xiang LI, Jiuxiang CHEN. A hybrid physics-data-knowledge driven approach for human-machine hybrid-augmented intelligence-based system management and control [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 571-583. |
[4] | Yan CHEN, Xueqin LUO, Wei LIANG, Yongfang XIE. Depression recognition based on emotional information fused with attentional mechanism [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 600-609. |
[5] | Renwu LI, Lingxiao ZHANG, Lin GAO, Chunpeng LI, Hao JIANG. Category-level object pose estimation from depth point cloud [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(2): 246-254. |
[6] | Linhui LI, Bin ZHOU, Weiwei REN, Jing LIAN. Review of pedestrian trajectory prediction methods [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(4): 399-411. |
[7] | Ying LI, Long CHEN, Zhaohong HUANG, Yang SUN, Guorong CAI. Plant leaf detection technology based on multi-scale CNN feature fusion [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(3): 304-311. |
[8] | Qing TIAN, Rong HU, Zuoyong LI, Yuanzheng CAI, Zhaochai YU. Insulator detection based on SE-YOLOv5s [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(3): 312-321. |
[9] | Wen LIU, Kunlin HU, Yan LI, Zhao LIU. A review of prediction methods for moving target trajectories [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(2): 149-160. |
[10] | Yang ZHANG, Yue HU, Dongrong XIN. A deep learning short-term traffic flow prediction method considering spatial-temporal association [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(2): 172-178. |
[11] | Dongjun LIU, Yuhan WANG, Wenfen LING, Yong PENG, Wanzeng KONG. Emotion recognition based on brain and machine collaborative intelligence [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(1): 65-75. |
[12] | Liang ZHAO, Zhifeng XIE, Kunpeng ZHANG, Yuqing ZHENG, Yuankun FU. Modeling signal propagation in wireless network:an interval type-2 fuzzy ensemble deep learning approach [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 401-411. |
[13] | Sijia TIAN,Qiang GU,Rong HU,Ruige LI,Dingxin HE. A robot sorting method based on deep learning [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(3): 268-274. |
[14] | Fei-Yue WANG,Dongpu CAO,Qinglai WEI. Reinforcement learning:toward action-knowledge merged intelligent mechanisms and algorithms [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(2): 101-106. |
[15] | Kai LIU, Yidong LI, Weipeng LIN. A survey on vehicle re-identification [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(1): 10-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|