Chinese Journal of Intelligent Science and Technology ›› 2020, Vol. 2 ›› Issue (1): 10-25.doi: 10.11959/j.issn.2096-6652.202002
• Regular Papers • Previous Articles Next Articles
Kai LIU,Yidong LI(),Weipeng LIN
Revised:
2020-02-18
Online:
2020-03-20
Published:
2020-04-10
Supported by:
CLC Number:
Kai LIU,Yidong LI,Weipeng LIN. A survey on vehicle re-identification[J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(1): 10-25.
"
分类依据 | 方法类别 | 参考文献 | 优点 | 缺点 |
实现方式 | 基于传感器的方法 | 参考文献[ | 不需要训练学习 | 复现难度高;识别率低;需要大量硬件 |
基于人工设计特征的方法 | 参考文献[ | 不依赖特殊硬件;可解释性强 | 时间复杂度高;受光照变化、视角变化和遮挡的影响较大 | |
基于深度学习的方法 | 参考文献[ | 识别率高;实时性强;可以解决光照变化、视角变化和遮挡问题 | 训练学习时间长;特征抽象,可解释性差 | |
解决车辆再识别问题的着手点 | 利用多维度信息的方法 | 参考文献[ | 对车辆特殊外观敏感 | 容易误判辨识性区域;易受视角、光照变化影响 |
基于度量学习的方法 | 参考文献[ | 识别率高;对难样本的识别效果好 | 训练学习时间长 | |
解决视角变化引起的外观偏差 | 参考文献[ | 对车辆的视角变化有鲁棒性;识别率高 | 训练学习时间长;系统实时性难以得到保证 | |
利用时序地理信息的方法 | 参考文献[ | 对难样本的识别效果好;方法新颖 | 需要车辆时序和位置标签;对数据集要求高 | |
是否需要车辆身份标签 | 有监督学习方法 | 参考文献[ | 识别率高;符合发展潮流;在不同数据集下的泛化能力强 | 训练学习时间长;需要大型数据集支持 |
无监督学习方法 | 参考文献[ | 无需人工标注;符合实际需求;拓展性强 | 识别率较低;时间复杂度高 |
"
方法 | 参考文献序号 | 评价指标 | ||
mAP | Rank-1 | Rank-5 | ||
FACT | [6] | 19.9 | 59.6 | 75.2 |
XVGAN | [64] | 24.7 | 60.2 | 77.0 |
FACT+SNN+STR | [6] | 27.7 | 61.4 | 78.7 |
OIFE | [10] | 51.4 | 68.3 | 89.7 |
PROVID | [39] | 53.4 | 81.5 | 95.1 |
FDA-Net | [63] | 55.4 | 84.2 | 92.4 |
VGG+C+T+S | [49] | 57.4 | 86.5 | 92.8 |
S-CNN+PathLSTM | [59] | 58.2 | 83.5 | 90.0 |
GS-TRE | [51] | 59.4 | 96.2 | 98.9 |
VAMI | [56] | 61.3 | 85.9 | 91.8 |
AAVER | — | 61.1 | 90.1 | 94.7 |
RAM | [65] | 61.5 | 88.6 | 94.0 |
VANet | [57] | 66.3 | 89.7 | 95.9 |
PNVR | [43] | 74.3 | 94.3 | 98.7 |
MRL | [58] | 78.5 | 94.3 | 99.0 |
PGAN | — | 79.3 | 96.5 | 98.3 |
PRN | [54] | 85.8 | 97.1 | 99.4 |
"
方法 | 参考文献序号 | 评价指标 | |||||
小尺寸 | 中尺寸 | 大尺寸 | |||||
Rank-1 | Rank-5 | Rank-1 | Rank-5 | Rank-1 | Rank-5 | ||
DRDL | [8] | 49.0% | 73.5% | 42.8% | 66.8% | 38.2% | 61.6% |
C2F-Rank | [50] | 61.1% | 81.7% | 56.2% | 76.2% | 51.4% | 72.2% |
VAMI | [56] | 63.1% | 83.2% | 52.8% | 75.1% | 47.3% | 70.2% |
FDA-Net | [63] | 64.0% | 82.8% | 57.8% | 78.3% | 49.4% | 70.4% |
VGG+C+T+S | [49] | 69.9% | 87.3% | 66.2% | 82.3% | 63.2% | 79.4% |
OIFE | [10] | — | — | — | — | 67.0% | 82.9% |
GS-TRE | [51] | 75.9% | 84.2% | 74.8% | 83.6% | 74.0% | 82.7% |
AAVER | — | 74.6% | 93.8% | 68.6% | 89.9% | 63.5% | 85.6% |
PNVR | [43] | 78.4% | 92.3% | 75.0% | 88.3% | 74.2% | 86.4% |
PGAN | — | — | — | — | — | 77.8% | 92.1% |
PRN | [54] | 78.9% | 94.8% | 74.9% | 92.0% | 71.5% | 88.4% |
VANet | [57] | 83.2% | 95.9% | 81.1% | 94.7% | 77.2% | 86.7% |
MRL | [58] | 84.8% | 96.9% | 80.9% | 94.1% | 78.4% | 92.1% |
[1] | FERIS R S , SIDDIQUIE B , PETTERSON J ,et al. Large-scale vehicle detection,indexing,and search in urban surveillance videos[J]. IEEE Transactions on Multimedia, 2011,14(1): 28-42. |
[2] | YANG L , LUO P , CHANGE LOY C ,et al. A large-scale car dataset for fine-grained categorization and verification[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2015: 3973-3981. |
[3] | SUN C C , ARR G S , RAMACHANDRAN R P . Vehicle reidentifica tion using multidetector fusion[J]. IEEE Transactions on Intelligent Transportation Systems, 2004,5(3): 155-164. |
[4] | LI N , JAIN J J , BUSSO C . Modeling of driver behavior in real world scenarios using multiple noninvasive sensors[J]. IEEE Transactions on Multimedia, 2013,15(5): 1213-1225. |
[5] | MEI T , RUI Y , LI S . Multimedia search reranking:a literature survey[J]. ACM Computing Surveys (CSUR), 2014,46(3): 1-38. |
[6] | LIU X , LIU W , MA H . Large-scale vehicle re-identification in urban surveillance videos[C]// The 2016 IEEE International Conference on Multimedia and Expo (ICME). Piscataway:IEEE Press, 2016: 1-6. |
[7] | KWONG K , KAVALER R , RAJAGOPAL R . Arterial travel time estimation based on vehicle re-identification using wireless magnetic sensors[J]. Transportation Research Part C:Emerging Technologies, 2009,17(6): 586-606. |
[8] | LIU H , TIAN Y , YANG Y . Deep relative distance learning:tell the difference between similar vehicles[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016: 2167-2175. |
[9] | KHAN S D , ULLAH H . A survey of advances in vision-based vehicle re-identification[J]. Computer Vision and Image Understanding, 2019,182: 50-63. |
[10] | WANG Z , TANG L , LIU X . Orientation invariant feature embedding and spatial temporal regularization for vehicle re-identification[C]// The IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2017: 379-387. |
[11] | KLEIN L A , KELLEY M R , MILLS M K . Evaluation of overhead and in-ground vehicle detector technologies for traffic flow measurement[J]. Journal of Testing and Evaluation, 1997,25(2): 205-214. |
[12] | DAVIES P . Vehicle detection and classification[J]. Information Technology Applications in Transport, 1986: 11-40. |
[13] | SANCHEZ R O , FLORES C , HOROWITZ R ,et al. Vehicle re-identification using wireless magnetic sensors:algorithm revision,modifications and performance analysis[C]// 2011 IEEE International Conference on Vehicular Electronics and Safety. Piscataway:IEEE Press, 2011: 226-231. |
[14] | CHARBONNIER S , PITTON A C , VASSILEV A . Vehicle re-identification with a single magnetic sensor[C]// 2012 IEEE International Instrumentation and Measurement Technology Conference. Piscataway:IEEE Press, 2012: 380-385. |
[15] | KWONG K , KAVALER R , RAJAGOPAL R ,et al. Arterial travel time estimation based on vehicle re-identification using wireless magnetic sensors[J]. Transportation Research Part C:Emerging Technologies, 2009,17(6): 586-606. |
[16] | JENG S T C , CHU L . Vehicle re-identification with the inductive loop signature technology[J]. Journal of the Eastern Asia Society for Transportation Studies, 2013(10): 1896-1915. |
[17] | NDOYE M , TOTTEN V , CARTER B ,et al. Vehicle detector signature processing and vehicle reidentification for travel time estimation[C]// Transportation Research Board Meeting.[S.l.:s.n. ], 2008. |
[18] | NDOYE M , TOTTEN V , KROGMEIER J V ,et al. A signal processing framework for vehicle re-identification and travel time estimation[C]// The 2009 12th International IEEE Conference on Intelligent Transportation Systems. Piscataway:IEEE Press, 2009: 1-6. |
[19] | ALI S S M , GEORGE B , VANAJAKSHI L . Multiple inductive loop detectors for intelligent transportation systems applications:Ramp metering,vehicle re-identification and lane change monitoring systems[C]// 2013 IEEE Symposium on Computers & Informatics (ISCI). Piscataway:IEEE Press, 2013: 176-180. |
[20] | PRINSLOO J , MALEKIAN R . Accurate vehicle location system using RFID,an internet of things approach[J]. Sensors, 2016,16(6): 825-848. |
[21] | MAZLOUMI E , CURRIE G , ROSE G . Using GPS data to gain insight into public transport travel time variability[J]. Journal of Transportation Engineering, 2009,136(7): 623-631. |
[22] | ZHANG Z , TAN T , HUANG K . Three-dimensional deformable-model-based localization and recognition of road vehicles[J]. IEEE Transactions on Image Processing, 2012,21(1): 1-13. |
[23] | WOESLER R , . Fast extraction of traffic parameters and re- identification of vehicles from video data[C]// The 2003 IEEE International Conference on Intelligent Transportation Systems. Piscataway:IEEE Press, 2003: 774-778. |
[24] | GUO Y , RAO C , SAMARASEKERA S ,et al. Matching vehicles under large pose transformations using approximate 3D models and piecewise MRF model[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2008: 1-8. |
[25] | ZAPLETAL D , HEROUT A . Vehicle re-identification for automatic video traffic surveillance[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016: 25-31. |
[26] | DUBSKá M , HEROUT A , SOCHOR J . Automatic camera calibration for traffic understanding[C]// British Machine Vision Conference (BMVC). Guildford:BMVA Press, 20144(6):8. |
[27] | DUBSKá M , HEROUT A , JURáNEK R , . Fully automatic roadside camera calibration for traffic surveillance[J]. IEEE Transactions on Intelligent Transportation Systems, 2015,16(3): 1162-1171. |
[28] | FERENCZ A , LEARNED-MILLER E G , MALIK J . Building a classification cascade for visual identification from one example[C]// The IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2005:1: 286-293. |
[29] | LIU X , LIU W , MEI T ,et al. A deep learning-based approach to progressive vehicle re-identification for urban surveillance[C]// The European Conference on Computer Vision. Heidelberg:Springer, 2016: 869-884. |
[30] | ZHENG Q , LIANG C , FANG W ,et al. Car re-identification from large scale images using semantic attributes[C]// The IEEE 17th International Workshop on Multimedia Signal Processing. Piscataway:IEEE Press, 2015: 1-5. |
[31] | LOWE D G . Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004,60(2): 91-110. |
[32] | VAN DE WEIJER J , SCHMID C , VERBEEK J . Learning color names for real-world applications[J]. IEEE Transactions on Image Processing, 2009,18(7): 1512-1523. |
[33] | LIAO S , HU Y , ZHU X . Person re-identification by local maximal occurrence representation and metric learning[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2015: 2197-2206. |
[34] | FU Y , WEI Y , WANG G ,et al. Self-similarity grouping:a simple unsupervised cross domain adaptation approach for person re- identification[C]// The IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2019: 6112-6121. |
[35] | DENG W , ZHENG L , YE Q ,et al. Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 994-1003. |
[36] | PENG P , XIANG T , WANG Y ,et al. Unsupervised cross-dataset transfer learning for person re-identification[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016: 1306-1315. |
[37] | WANG J , ZHU X , GONG S ,et al. Transferable joint attribute-identity deep learning for unsupervised person re-identification[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 2275-2284. |
[38] | WEI L , ZHANG S , GAO W ,et al. Person transfer GAN to bridge domain gap for person re-identification[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 79-88. |
[39] | LIU X , LIU W , MEI T . PROVID:progressive and multimodal vehicle reidentification for large-scale urban surveillance[J]. IEEE Transactions on Multimedia, 2018,20(3): 645-658. |
[40] | GUO Y F , WU L , LU H . Null Foley-Sammon transform[J]. Pattern Recognition, 2006,39(11): 2248-2251. |
[41] | ZHANG L , XIANG T , GONG S . Learning a discriminative null space for person re-identification[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016: 1239-1248. |
[42] | YAN K , TIAN Y , WANG Y . Exploiting multi-grain ranking constraints for precisely searching visually-similar vehicles[C]// The 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2017: 562-570. |
[43] | HE B , LI J , ZHAO Y ,et al. Part-regularized near-duplicate vehicle re-identification[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2019: 3997-4005. |
[44] | REDMON J , DIVVALA S , GIRSHICK R .et al. You only look once:unified,real-time object detection[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016: 779-788. |
[45] | JOSEPH REDMON AND ALI FARHADI , . YOLO9000:better,faster,stronger[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2017: 6517-6525. |
[46] | TANG Z , NAPHADE M , BIRCHFIELD S ,et al. PAMTRI:pose-aware multi-task learning for vehicle re-identification using highly randomized synthetic data[C]// The IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2019: 211-220. |
[47] | SUN K , XIAO B , LIU D ,et al. Deep high-resolution representation learning for human pose estimation[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2019: 5693-5703. |
[48] | HUANG G , LIU Z , VAN DER MAATEN L ,et al. Densely connected convolutional networks[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2017: 4700-4708. |
[49] | ZHANG Y , LIU D , ZHA Z J . Improving triplet-wise training of convolutional neural network for vehicle re-identification[C]// The 2017 IEEE International Conference on Multimedia and Expo (ICME). Piscataway:IEEE Press, 2017: 1386-1391. |
[50] | GUO H , ZHAO C , LIU Z . Learning coarse-to-fine structured feature embedding for vehicle re-identification[C]// The 3nd AAAI Conference on Artificial Intelligence. Piscataway:IEEE Press, 2018: 6853-6860. |
[51] | BAI Y , LOU Y , GAO F . Group-sensitive triplet embedding for vehicle re-identification[J]. IEEE Transactions on Multimedia, 2018,20(9): 2385-2399. |
[52] | SUN Y , ZHENG L , YANG Y ,et al. Beyond part models:person retrieval with refined part pooling (and a strong convolutional baseline)[C]// The European Conference on Computer Vision (ECCV) . Heidelberg:Springer, 2018: 480-496. |
[53] | WANG G , YUAN Y , CHEN X ,et al. Learning discriminative features with multiple granularities for person re-identification[C]// The 2018 ACM Multimedia Conference on Multimedia Conference. New York:ACM Press, 2018: 274-282. |
[54] | CHEN H , LAGADEC B , BREMOND F . Partition and reunion:a two-branch neural network for vehicle re-identification[C]// The IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE Press, 2019: 184-192. |
[55] | NEWELL A , YANG K , DENG J . Stacked hourglass networks for human pose estimation[C]// The European Conference on Computer Vision. Heidelberg:Springer, 2016: 483-499. |
[56] | ZHOU Y , SHAO L , DHABI A . Viewpoint-aware attentive multi-view inference for vehicle re-identification[C]// The IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2018: 6489-6498. |
[57] | CHU R , SUN Y , LI Y ,et al. Vehicle re-identification with viewpoint-aware metric learning[C]// The IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2019: 8282-8291. |
[58] | LIN W , LI Y , YANG X ,et al. Multi-view learning for vehicle re-identification[C]// 2019 IEEE International Conference on Multimedia and Expo (ICME). Piscataway:IEEE Press, 2019: 832-837. |
[59] | SHEN Y , XIAO T , LI H . Learning deep neural networks for vehicle re-id with visual-spatio-temporal path proposals[C]// The 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2017: 1918-1927. |
[60] | DENG J , DONG W , SOCHER R . ImageNet:a large-scale hierarchical image database[C]// The 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2009: 248-255. |
[61] | YANG L , LUO P , CHANGE LOY C . A large-scale car dataset for fine-grained categorization and verification[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2015: 3973-3981. |
[62] | KANACI A , ZHU X , GONG S . Vehicle re-identification in context[C]// The German Conference on Pattern Recognition. Heidelberg:Springer, 2018: 377-390. |
[63] | LOU Y , BAI Y , LIU J ,et al. Veri-wild:a large dataset and a new method for vehicle re-identification in the wild[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2019: 3235-3243. |
[64] | ZHOU Y , SHAO L . Cross-view GAN based vehicle generation for re-identification[C]// British Machine Vision Conference (BMVC). Heidelberg:Springer, 2017. |
[65] | LIU X , ZHANG S , HUANG Q ,et al. Ram:a region-aware deep model for vehicle re-identification[C]// The 2018 IEEE International Conference on Multimedia and Expo (ICME). Piscataway:IEEE Press, 2018: 1-6. |
[66] | ANTONIO M P , PALAZZI A , BERGAMINI L ,et al. Unsupervised vehicle re-identification using triplet networks[C]// The IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE Press, 2018: 166-171. |
[67] | BASHIR R M S , SHAHZAD M , FRAZ M M . DUPL-VR:deep unsupervised progressive learning for vehicle re-identification[C]// The International Symposium on Visual Computing. Heidelberg:Springer, 2018: 286-295. |
[68] | BASHIR R M S , SHAHZAD M , FRAZ M M . Vr-proud:vehicle re-identification using progressive unsupervised deep architecture[J]. Pattern Recognition, 2019,90: 52-65. |
[69] | 王茜, 陈一民, 丁友东 . 复杂环境中基于视觉词袋模型的车辆再识别算法[J]. 计算机应用, 2018,38(5): 83-87. |
WANG Q , CHEN Y M , DING Y D . Vehicle re-identification algorithm based on bag of visual words in complicated environments[J]. Com-puter Application, 2018,38(5): 83-87. | |
[70] | 李熙莹, 周智豪, 邱铭凯 . 基于部件融合特征的车辆重识别算法[J]. 计算机工程, 2019(6): 12-20. |
LI X Y , ZHOU Z H , QIU M K . Vehicle re-identification algorithm based on component fusion feature[J]. Computer Engineering, 2019(6): 12-20. | |
[71] | 王盼盼, 李玉惠 . 基于特征融合和 L-M 算法的车辆重识别方法[J]. 电子科技, 2018,31(4): 12-15. |
WANG P P , LI Y H . Vehicle re-identification algorithm based on component fusion feature[J]. Electronic Science and Technology, 2018,31(4): 12-15. |
[1] | Zhe HUANG, Yongcai WANG, Deying LI. A survey of 3D object detection algorithms [J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(1): 7-31. |
[2] | Jingwei LU, Xiang CHENG, Fei-Yue WANG. Artificial intelligence and deep learning methods for solving differential equations: the state of the art and prospects [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 461-476. |
[3] | Jun ZHANG, Peidong XU, Siyuan CHEN, Tianlu GAO, Yuxin DAI, Ke ZHANG, Hang ZHAO, Jiemai GAO, Yuyang BAI, Jinxing LI, Haoran ZHANG, Xiang LI, Jiuxiang CHEN. A hybrid physics-data-knowledge driven approach for human-machine hybrid-augmented intelligence-based system management and control [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 571-583. |
[4] | Yan CHEN, Xueqin LUO, Wei LIANG, Yongfang XIE. Depression recognition based on emotional information fused with attentional mechanism [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 600-609. |
[5] | Renwu LI, Lingxiao ZHANG, Lin GAO, Chunpeng LI, Hao JIANG. Category-level object pose estimation from depth point cloud [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(2): 246-254. |
[6] | Linhui LI, Bin ZHOU, Weiwei REN, Jing LIAN. Review of pedestrian trajectory prediction methods [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(4): 399-411. |
[7] | Ying LI, Long CHEN, Zhaohong HUANG, Yang SUN, Guorong CAI. Plant leaf detection technology based on multi-scale CNN feature fusion [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(3): 304-311. |
[8] | Qing TIAN, Rong HU, Zuoyong LI, Yuanzheng CAI, Zhaochai YU. Insulator detection based on SE-YOLOv5s [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(3): 312-321. |
[9] | Wen LIU, Kunlin HU, Yan LI, Zhao LIU. A review of prediction methods for moving target trajectories [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(2): 149-160. |
[10] | Yang ZHANG, Yue HU, Dongrong XIN. A deep learning short-term traffic flow prediction method considering spatial-temporal association [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(2): 172-178. |
[11] | Dongjun LIU, Yuhan WANG, Wenfen LING, Yong PENG, Wanzeng KONG. Emotion recognition based on brain and machine collaborative intelligence [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(1): 65-75. |
[12] | Liang ZHAO, Zhifeng XIE, Kunpeng ZHANG, Yuqing ZHENG, Yuankun FU. Modeling signal propagation in wireless network:an interval type-2 fuzzy ensemble deep learning approach [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 401-411. |
[13] | Sijia TIAN,Qiang GU,Rong HU,Ruige LI,Dingxin HE. A robot sorting method based on deep learning [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(3): 268-274. |
[14] | Fei-Yue WANG,Dongpu CAO,Qinglai WEI. Reinforcement learning:toward action-knowledge merged intelligent mechanisms and algorithms [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(2): 101-106. |
[15] | Xiaofeng YUAN,Yalin WANG,Chunhua YANG,Weihua GUI. The application of deep learning in data-driven modeling of process industries [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(2): 107-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|