Chinese Journal of Intelligent Science and Technology ›› 2022, Vol. 4 ›› Issue (2): 246-254.doi: 10.11959/j.issn.2096-6652.202227
• Special Topic: Autonomous Agent Learning for Dexterous and Accurate Manipulations • Previous Articles Next Articles
Renwu LI1,2, Lingxiao ZHANG1,2, Lin GAO1,2, Chunpeng LI1,2, Hao JIANG1,2
Online:
2022-06-15
Published:
2022-06-01
Supported by:
CLC Number:
Renwu LI, Lingxiao ZHANG, Lin GAO, et al. Category-level object pose estimation from depth point cloud[J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(2): 246-254.
[1] | HINTERSTOISSER S , HOLZER S , CAGNIART C ,et al. Multimodal templates for real-time detection of textureless objects in heavily cluttered scenes[C]// Proceedings of 2011 International Conference on Computer Vision.[S.l.:s.n.], 2011. |
[2] | HINTERSTOISSER S , CAGNIART C , ILIC S ,et al. Gradient response maps for real-time detection of textureless objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(5): 876-888. |
[3] | HINTERSTOISSER S , LEPETIT V , ILIC S ,et al. Model based training,detection and pose estimation of texture-less 3D objects in heavily cluttered scenes[C]// Proceedings of the Asian Conference on Computer Vision.[S.l.:s.n.], 2013. |
[4] | DROST B , ULRICH M , NAVAB N ,et al. Model globally,match locally:efficient and robust 3D object recognition[C]// Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2010: 998-1005. |
[5] | CHOI C , CHRISTENSEN H I . 3D pose estimation of daily objects using an RGB-D camera[C]// Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2012: 3342-3349. |
[6] | CHOI C , TREVOR A J B , CHRISTENSEN H I . RGB-D edge detection and edge-based registration[C]// Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2013: 1568-1575. |
[7] | VIDAL J , LIN C Y , LLADó X , ,et al. A method for 6D pose estimation of free-form rigid objects using point pair features on range data[J]. Sensors, 2018,18(8): 2678. |
[8] | GUO J W , XING X J , QUAN W Z ,et al. Efficient center voting for object detection and 6D pose estimation in 3D point cloud[J]. IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society, 2021,30: 5072-5084. |
[9] | XIANG Y , SCHMIDT T , NARAYANAN V ,et al. PoseCNN:a convolutional neural network for 6D object pose estimation in cluttered scenes[C]// Proceedings of Robotics:Science and Systems XIV. Robotics:Science and Systems Foundation, 2018. |
[10] | LI Y , WANG G , JI X Y ,et al. DeepIM:deep iterative matching for 6D pose estimation[J]. International Journal of Computer Vision, 2020,128(3): 657-678. |
[11] | XU D F , ANGUELOV D , JAIN A . PointFusion:deep sensor fusion for 3D bounding box estimation[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 244-253. |
[12] | WANG C , XU D F , ZHU Y K ,et al. DenseFusion:6D object pose estimation by iterative dense fusion[C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2019: 3338-3347. |
[13] | HE Y S , SUN W , HUANG H B ,et al. PVN3D:a deep point-wise 3D keypoints voting network for 6DoF pose estimation[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2020: 11629-11638. |
[14] | HE Y S , HUANG H B , FAN H Q ,et al. FFB6D:a full flow bidirectional fusion network for 6D pose estimation[C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2021: 3002-3012. |
[15] | ARUN K S , HUANG T S , BLOSTEIN S D . Least-squares fitting of two 3-D point sets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987,9(5): 698-700. |
[16] | LEPETIT V , MORENO-NOGUER F , FUA P . EPnP:an accurate O(n)solution to the PnP problem[J]. International Journal of Computer Vision, 2008,81(2): 155-166. |
[17] | BESL P J , MCKAY N D . Method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14(2): 239-256. |
[18] | LABBé Y , CARPENTIER J , AUBRY M ,et al. CosyPose:consistent multi-view multi-object 6D pose estimation[J]. arXiv preprint,2020,arXiv:2008.08465. |
[19] | PARK K , PATTEN T , VINCZE M . Pix2Pose:pixel-wise coordinate regression of objects for 6D pose estimation[C]// Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE Press, 2019: 7667-7676. |
[20] | LI Z G , WANG G , JI X Y . CDPN:coordinates-based disentangled pose network for real-time RGB-based 6-DoF object pose estimation[C]// Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE Press, 2019: 7677-7686. |
[21] | K?NIG R , DROST B . A hybrid approach for 6DoF pose estimation[J]. arXiv preprint,2020,arXiv:2011.05669. |
[22] | HODA? T , BARáTH D , MATAS J . EPOS:estimating 6D pose of objects with symmetries[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2020: 11700-11709. |
[23] | HAGELSKJ?R F , BUCH A G . PointVoteNet:accurate object detection and 6 DOF pose estimation in point clouds[C]// Proceedings of 2020 IEEE International Conference on Image Processing. Piscataway:IEEE Press, 2020: 2641-2645. |
[24] | SUNDERMEYER M , DURNER M , PUANG E Y ,et al. Multi-path learning for object pose estimation across domains[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2020: 13913-13922. |
[25] | SAHIN C , KIM T K . Category-level 6D object pose recovery in depth images[C]// Proceedings of the European Conference on Computer Vision. Cham:Springer, 2019. |
[26] | WANG H , SRIDHAR S , HUANG J W ,et al. Normalized object coordinate space for category-level 6D object pose and size estimation[C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2019: 2637-2646. |
[27] | UMEYAMA S . Least-squares estimation of transformation parameters between two point patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991,13(4): 376-380. |
[28] | FISCHLER M A , BOLLES R C . Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981,24(6): 381-395. |
[29] | CHEN D S , LI J , WANG Z ,et al. Learning canonical shape space for category-level 6D object pose and size estimation[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2020: 11970-11979. |
[30] | AN J , CHO S . Variational autoencoder based anomaly detection using reconstruction probability[J]. Special Lecture on IE, 2015,2(1): 1-18. |
[31] | TIAN M , ANG M H , LEE G H . Shape prior deformation for categorical 6D object pose and size estimation[C]// Proceedings of the European Conference on Computer Vision. Cham:Springer, 2020: 530-546. |
[32] | CHARLES R Q , HAO S , MO K C ,et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2017: 77-85. |
[1] | Zhe HUANG, Yongcai WANG, Deying LI. A survey of 3D object detection algorithms [J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(1): 7-31. |
[2] | Jingwei LU, Xiang CHENG, Fei-Yue WANG. Artificial intelligence and deep learning methods for solving differential equations: the state of the art and prospects [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 461-476. |
[3] | Jun ZHANG, Peidong XU, Siyuan CHEN, Tianlu GAO, Yuxin DAI, Ke ZHANG, Hang ZHAO, Jiemai GAO, Yuyang BAI, Jinxing LI, Haoran ZHANG, Xiang LI, Jiuxiang CHEN. A hybrid physics-data-knowledge driven approach for human-machine hybrid-augmented intelligence-based system management and control [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 571-583. |
[4] | Yan CHEN, Xueqin LUO, Wei LIANG, Yongfang XIE. Depression recognition based on emotional information fused with attentional mechanism [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 600-609. |
[5] | Junwei DUAN, Lincan XU, Yujuan QUAN, Long CHEN, C.L.Philip CHEN. Graph-regularized Bayesian broad learning system [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(1): 109-117. |
[6] | Linhui LI, Bin ZHOU, Weiwei REN, Jing LIAN. Review of pedestrian trajectory prediction methods [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(4): 399-411. |
[7] | Ying LI, Long CHEN, Zhaohong HUANG, Yang SUN, Guorong CAI. Plant leaf detection technology based on multi-scale CNN feature fusion [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(3): 304-311. |
[8] | Qing TIAN, Rong HU, Zuoyong LI, Yuanzheng CAI, Zhaochai YU. Insulator detection based on SE-YOLOv5s [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(3): 312-321. |
[9] | Wen LIU, Kunlin HU, Yan LI, Zhao LIU. A review of prediction methods for moving target trajectories [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(2): 149-160. |
[10] | Yang ZHANG, Yue HU, Dongrong XIN. A deep learning short-term traffic flow prediction method considering spatial-temporal association [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(2): 172-178. |
[11] | Dongjun LIU, Yuhan WANG, Wenfen LING, Yong PENG, Wanzeng KONG. Emotion recognition based on brain and machine collaborative intelligence [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(1): 65-75. |
[12] | Liang ZHAO, Zhifeng XIE, Kunpeng ZHANG, Yuqing ZHENG, Yuankun FU. Modeling signal propagation in wireless network:an interval type-2 fuzzy ensemble deep learning approach [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 401-411. |
[13] | Sijia TIAN,Qiang GU,Rong HU,Ruige LI,Dingxin HE. A robot sorting method based on deep learning [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(3): 268-274. |
[14] | Fei-Yue WANG,Dongpu CAO,Qinglai WEI. Reinforcement learning:toward action-knowledge merged intelligent mechanisms and algorithms [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(2): 101-106. |
[15] | Xiaofeng YUAN,Yalin WANG,Chunhua YANG,Weihua GUI. The application of deep learning in data-driven modeling of process industries [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(2): 107-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|